【題目】已知單調(diào)遞增的等比數(shù)列
滿足
,且
是
,
的等差中項.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)若數(shù)列
滿足
,求數(shù)列
的通項公式;
(Ⅲ)在(Ⅱ)的條件下,設
,問是否存在實數(shù)
使得數(shù)列
(
)是單調(diào)遞增數(shù)列?若存在,求出
的取值范圍;若不存在,請說明理由.
【答案】(Ⅰ)
;(Ⅱ)
; (Ⅲ)
.
【解析】試題分析:
(Ⅰ)由題意求得
,
,∴
;
(Ⅱ)利用題意錯位相減可得
;
(Ⅲ)題中不等式轉(zhuǎn)化為
,分類討論當
為大于或等于4的偶數(shù),當
為大于或等于3的奇數(shù)時,兩種情況可得
的取值范圍是
.
試題解析:
(Ⅰ)設此等比數(shù)列為
,
,
,
,…,其中
,
.
由題意知:
,①
.②
②
①得
,
即
,解得
或
.
∵等比數(shù)列
單調(diào)遞增,∴
,
,∴
;
(Ⅱ)由(Ⅰ)可知
(
),
由
(
),
得
(
),
故
,即
(
),
當
時,
,
,∴
;
(Ⅲ)∵
,
∴當
時,
,
,
依據(jù)題意,有
,
即
,
①當
為大于或等于4的偶數(shù)時,有
恒成立,
又
隨
增大而增大,
則當且僅當
時,
,故
的取值范圍為
;
②當
為大于或等于3的奇數(shù)時,有
恒成立,且僅當
時,
,故
的取值范圍為
;
又當
時,由
,得
,
綜上可得,所求
的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是首項為a1=
,公比q=
的等比數(shù)列,設bn+2=3
an(n∈N*),數(shù)列{cn}滿足cn=anbn .
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項和Sn;
(3)若cn≤
m2+m﹣1對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=a,Sn是數(shù)列{an}的前n項和,且滿足:Sn2=3n2an+Sn﹣12 , an≠0,n≥2,n∈N* .
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時,數(shù)列{an}是遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
(
)
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)證明:當
時,函數(shù)
(
)有最小值.記
的最小值為
,求
的值域;
(Ⅲ)若
存在兩個不同的零點
,
(
),求
的取值范圍,并比較
與0的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,梯形
中,
,
,
,
,
和
分別為
與
的中點,對于常數(shù)
,在梯形
的四條邊上恰好有8個不同的點
,使得
成立,則實數(shù)
的取值范圍是( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,M和N分別為BC、C1C的中點,那么異面直線MN與AC所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(3,3)、B(5,2)到直線l的距離相等,且直線l經(jīng)過兩直線l1:3x﹣y﹣1=0和l2:x+y﹣3=0的交點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點A(a,a)可作圓x2+y2﹣2ax+a2+2a﹣3=0的兩條切線,則實數(shù)a的取值范圍為( )
A.a<﹣3或a>1
B.a< ![]()
C.﹣3<a<1 或a> ![]()
D.a<﹣3或1<a< ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高一年級期末考試的學生中抽出60名學生,其成績(均為整數(shù))的頻率分布直方圖如圖所示: ![]()
(1)依據(jù)頻率分布直方圖,估計這次考試的及格率(60分及以上為及格)和平均分;
(2)已知在[90,100]段的學生的成績都不相同,且都在94分以上,現(xiàn)用簡單隨機抽樣方法,從95,96,97,98,99,100這6個數(shù)中任取2個數(shù),求這2個數(shù)恰好是兩個學生的成績的概率.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com