分析 利用不等式的性質可得$a+b≥2\sqrt{ab}$,進一步得到$1+a+b+ab≥1+2\sqrt{ab}+ab$,即$(1+a)(1+b)≥(1+\sqrt{ab})^{2}$,兩邊取對數(shù)得答案.
解答 證明:∵a>0,b>0,
∴$a+b≥2\sqrt{ab}$,則$1+a+b+ab≥1+2\sqrt{ab}+ab$,
即$(1+a)(1+b)≥(1+\sqrt{ab})^{2}$,
∴l(xiāng)g[(1+a)(1+b)]$≥lg(1+\sqrt{ab})^{2}$,
∴$\frac{1}{2}[lg(1+a)+lg(1+b)]≥lg(1+\sqrt{ab})$,
即lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].
點評 本題考查對數(shù)的運算性質,考查了基本不等式的性質,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | k的最大值為2-e-$\frac{1}{e}$ | B. | k的最小值為2-e-$\frac{1}{e}$ | ||
| C. | k的最大值為2 | D. | k的最小值為2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 50 | B. | 100 | C. | 1500 | D. | 2500 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| x | 1 | 3 | 4 | 8 |
| y | 3 | 3 | 1 | 0 |
| A. | 1 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | e | B. | e2 | C. | 2e | D. | 2e2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com