若斜率為
的直線l與橢圓
+
=1(a>b>0)有兩個不同的交點,且這兩個交點在x軸上的射影恰好是橢圓的兩個焦點,則該橢圓的離心率為________.
科目:高中數(shù)學(xué) 來源: 題型:
如圖,F(xiàn)是中心在原點、焦點在x軸上的橢圓C的右焦點,直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1) 求橢圓C的方程;
(2) 點P是橢圓C上動點,PM⊥l,垂足為M.是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
給定橢圓C:
+
=1(a>b>0),稱圓心在原點O、半徑是
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為F(
,0),其短軸的一個端點到點F的距離為
.
(1) 求橢圓C和其“準(zhǔn)圓”的方程;
(2) 若點A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點,B、D是橢圓C上的兩相異點,且BD⊥x軸,求
·
的取值范圍;
(3) 在橢圓C的“準(zhǔn)圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知梯形ABCD中|AB|=2|CD|,點E滿足
,雙曲線過C、D、E三點,且以A、B為焦點.當(dāng)
≤λ≤
時,求雙曲線離心率e的取值范圍.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com