設(shè)y1=0.4
,y2=0.5
,y3=0.5
,則
y3<y2<y1
y1<y2<y3
y2<y3<y1
y1<y3<y2
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:訓(xùn)練必修四數(shù)學(xué)人教A版 人教A版 題型:013
設(shè)m、n是兩個(gè)非零向量,且m=(x1,y1),n=(x2,y2),則以下等式中與m⊥n等價(jià)的個(gè)數(shù)有
①m·n=0
②x1x2=-y1y2
③|m+n|=|m-n|
④|m+B|=![]()
1
2
3
4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省福州三中2012屆高三第四次月考數(shù)學(xué)理科試題 題型:044
設(shè)復(fù)數(shù)z對(duì)應(yīng)復(fù)平面上點(diǎn)P,且復(fù)數(shù)z滿足|z-1|+|Rez-4|=5(其中Rez表示復(fù)數(shù)z的實(shí)部),動(dòng)點(diǎn)P的軌跡為曲線C.
(1)求曲線C的過程;
(2)設(shè)過點(diǎn)F(1,0)的直線l與曲線C交于A(x1,y1),B(x2,y2)(x1<4<x2)兩點(diǎn),且A、B在x軸上的正投影分別為C、D,求證AB|+|CD|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓
=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過點(diǎn)T(t,m)的直線TA,TB與此橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
![]()
(1)設(shè)動(dòng)點(diǎn)P滿足PF2-PB2=4,求點(diǎn)P的軌跡;
(2)設(shè)x1=2,x2=
,求點(diǎn)T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)為
,焦點(diǎn)是
,點(diǎn)
到直線
的距離為
,過點(diǎn)
且傾斜角為銳角的直線
與橢圓交于A、B兩點(diǎn),使得
.
(1)求橢圓的標(biāo)準(zhǔn)方程; (2)求直線l的方程.
【解析】(1)中利用點(diǎn)F1到直線x=-
的距離為
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到橢圓的方程。(2)中,利用
,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在橢圓
+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。
解:(1)∵F1到直線x=-
的距離為
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為
+y2=1.……4分
(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知![]()
,![]()
∴
……6分
∵A、B在橢圓
+y2=1上,
∴
……10分
∴l(xiāng)的斜率為
=
.
∴l(xiāng)的方程為y=
(x-
),即
x-y-
=0.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com