| A. | $\frac{2\sqrt{13}}{13}$ | B. | $\frac{4}{5}$ | C. | $\frac{\sqrt{13}}{65}$ | D. | $\frac{\sqrt{13}}{13}$ |
分析 由已知結合同角三角函數(shù)基本關系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA,進而利用誘導公式,同角三角函數(shù)基本關系式即可計算得解.
解答 解:在△ABC中,∵a>b,
∴由sinB=$\frac{3}{5}$,可得cosB=$\frac{4}{5}$.
∴由已知及余弦定理,有b2=a2+c2-2accosB=25+36-2×5×6×$\frac{4}{5}$=13,
∴b=$\sqrt{13}$.由正弦定理$\frac{a}{sinA}=\frac{sinB}$,得sinA=$\frac{asinB}$=$\frac{3\sqrt{13}}{13}$.
∴sin(A+$\frac{π}{2}$)=cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{2\sqrt{13}}{13}$.
故選:A.
點評 本題考查正弦定理和余弦定理在解三角形中的應用,考查誘導公式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ①②④ | B. | ②③ | C. | ①②③ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -1 | B. | 3 | C. | 1 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| 年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 銷售價格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com