欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,已知圓C:(x-1)2+(y-2)2=2,點(diǎn)P(2,-1),過(guò)P點(diǎn)作圓C的切線PA、PB,A、B為切點(diǎn).

(1)求PA、PB所在直線的方程;

(2)求切線長(zhǎng)|PA|;

(3)求∠APB的正弦值;

(4)求AB的方程.

思路解析:求切線可用圓心到直線的距離等于半徑;求AB的方程可以設(shè)而不求,也可兩式相減.

(1)解:設(shè)切線的斜率為k.

∵切線過(guò)點(diǎn)P(2,-1),∴切線的方程為y+1=k(x-2),

即kx-y-2k-1=0.

又C(1,2),半徑r=

由點(diǎn)到直線的距離公式,得.

解之,得k=7或k=-1.

故所求切線PA、PB的方程分別是x+y-1=0和7x-y-15=0.

(2)解:連結(jié)AC、PC,則AC⊥AP.

在Rt△APC中,|AC|=,|PC|=,

∴|PA|===2.

(3)解:連結(jié)CB,則CB⊥BP.

由△APC≌△BPC知,∠APC=∠BPC,

∴∠APB=2∠APC.

∴sin∠APB=sin2∠APC=2sin∠APC·cos∠APC=2××=.

(4)解法一:設(shè)A(x1,y1)、B(x2,y2),

則(x1-1)2+(y1-2)2=2,(x2-1)2+(y2-2)2=2.

∵CA⊥AP,∴kAC·kAP=-1,即·=-1.

∴(y1-2)(y1+1)=-(x1-1)(x1-2).

變形,得(y1-2)(y1-2+3)=-(x1-1)(x1-1-1),

(y1-2)2+(x1-1)2+3(y1-2)-(x1-1)=0.

∵(x1-1)2+(y1-2)2=2,

∴上式可化簡(jiǎn)為x1-3y1+3=0.

同理可得x2-3y2+3=0.

∵A、B兩點(diǎn)的坐標(biāo)都滿足方程x-3y+3=0,

∴直線AB的方程是x-3y+3=0.

解法二:∵∠CAP=∠CBP=90°,

∴A、B兩點(diǎn)在以CP為直徑的圓上.

∵CP的中點(diǎn)坐標(biāo)為(,),即(,).

|CP|=,∴以CP為直徑的圓的方程為

(x-)2+(y-)2=()2,即x2+y2-3x-y=0.①

又圓C:(x-1)2+(y-2)2=2的一般方程為x2+y2-2x-4y+3=0.②

②-①,得x-3y+3=0為直線AB的方程.

深化升華

    凡與圓的切線有關(guān)的題目,常用切線與過(guò)切點(diǎn)的半徑垂直這一性質(zhì)解題.因此,求切線的方程可用點(diǎn)到直線的距離公式;求切線長(zhǎng)可用勾股定理;求兩切點(diǎn)所在直線的方程,方法有三:一是設(shè)而不求法;二是兩式相減法;三是求出A、B兩點(diǎn)的坐標(biāo),應(yīng)用兩點(diǎn)間的距離公式.例題中選擇了前兩種方法供借鑒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過(guò)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.
(Ⅰ)當(dāng)r=2時(shí),求滿足條件的P點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)r∈(1,+∞)時(shí),求點(diǎn)N的軌跡G的方程;
(Ⅲ)過(guò)點(diǎn)P(0,2)的直線l與(Ⅱ)中軌跡G相交于兩個(gè)不同的點(diǎn)E、F,若
CE
CF
>0
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓C:x2+y2+10x+10y=0,點(diǎn)A(0,6).
(1)求圓心在直線y=x上,經(jīng)過(guò)點(diǎn)A,且與圓C相切的圓N的方程;
(2)若過(guò)點(diǎn)A的直線m與圓C交于P,Q兩點(diǎn),且圓弧PQ恰為圓C周長(zhǎng)的
14
,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過(guò)點(diǎn)(
2
6
2
)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年廣東省深圳市寶安中學(xué)、翠園中學(xué)、外國(guó)語(yǔ)學(xué)校高三(上)聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過(guò)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.
(Ⅰ)當(dāng)r=2時(shí),求滿足條件的P點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)r∈(1,+∞)時(shí),求點(diǎn)N的軌跡G的方程;
(Ⅲ)過(guò)點(diǎn)P(0,2)的直線l與(Ⅱ)中軌跡G相交于兩個(gè)不同的點(diǎn)E、F,若,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年江蘇省南通中學(xué)高三(下)4月調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過(guò)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.
(Ⅰ)當(dāng)r=2時(shí),求滿足條件的P點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)r∈(1,+∞)時(shí),求點(diǎn)N的軌跡G的方程;
(Ⅲ)過(guò)點(diǎn)P(0,2)的直線l與(Ⅱ)中軌跡G相交于兩個(gè)不同的點(diǎn)E、F,若,求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案