欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.向邊長為a的正三角形內(nèi)任投一點,點落在三角形內(nèi)切圓內(nèi)的概率是$\frac{\sqrt{3}π}{9}$.

分析 求出正三角形的面積與其內(nèi)切圓的面積,即可求出對應(yīng)的概率.

解答 解:∵正三角形邊長為a,
∴該正三角形的面積S正三角形=$\frac{\sqrt{3}}{4}$a2
其內(nèi)切圓半徑為r=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$a=$\frac{\sqrt{3}}{6}$a,
內(nèi)切圓面積為S內(nèi)切圓=πr2=$\frac{π}{12}$a2
∴點落在圓內(nèi)的概率為
P=$\frac{{S}_{內(nèi)切圓}}{{S}_{正三角形}}$=$\frac{{\frac{π}{12}a}^{2}}{{\frac{\sqrt{3}}{4}a}^{2}}$=$\frac{\sqrt{3}π}{9}$.
故答案為:$\frac{\sqrt{3}π}{9}$.

點評 本題考查了幾何概型的計算問題,解題的關(guān)鍵是弄清幾何測度思維什么,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是空間兩個不共線的向量,已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=5$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{DC}$=-$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,且A,B,D三點共線,則實數(shù)k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,F(xiàn)1F2為橢圓C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦點,點P為橢圓C上一點,延長PF1、,PF2分別交橢圓C于A,B.若$\overrightarrow{P{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,$\overrightarrow{P{F}_{2}}$=$λ\overrightarrow{{F}_{2}B}$,則λ=( 。
A.1B.$\sqrt{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,直線l經(jīng)過第二、第三、第四象限,l的傾斜角為α,斜率為k,則( 。
A.ksin(π+α)>0B.kcos(π-α)>0C.ksinα≤0D.kcosα≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)在[-2,2]上是奇函數(shù),在區(qū)間[0,2]上是減函數(shù),且f(a-1)<f(2-a),則a的取值范圍是$\frac{3}{2}$<a≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知四棱錐S-ABCD,底面ABCD為菱形,SA⊥平面ABCD,∠ADC=60°,E,F(xiàn)分別是SC,BC的中點.
(Ⅰ)證明:SD⊥AF;
(Ⅱ)若AB=2,SA=4,求二面角F-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l:y=x+$\sqrt{6}$,圓O:x2+y2=4,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)已知動直線l1(斜率存在)與橢圓E交于P,Q兩個不同點,且△OPQ的面積S△OPQ=1,若N為線段PQ的中點,問:在x軸上是否存在兩個定點A,B,使得直線NA與NB的斜率之積為定值?若存在,求出A,B的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.中心在坐標(biāo)原點O,焦點在坐標(biāo)軸上的橢圓E經(jīng)過兩點$R({-\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{6}}}{2}}),Q({\frac{3}{2},\frac{{\sqrt{2}}}{2}})$.分別過橢圓E的焦點F1、F2的動直線l1,l2相交于P點,與橢圓E分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率k1、k2、k3、k4滿足k1+k2=k3+k4
(1)求橢圓E的方程;
(2)是否存在定點M、N,使得|PM|+|PN|為定值.若存在,求出M、N點坐標(biāo)并求出此定值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},則∁U(A∪B)=( 。
A.{5}B.{2}C.{1,2,3,4}D.{1,3,4,5}

查看答案和解析>>

同步練習(xí)冊答案