分析 點(diǎn)斜式設(shè)出直線(xiàn)l的方程,代入拋物線(xiàn)方程,求出A,B兩點(diǎn)的縱坐標(biāo),利用拋物線(xiàn)的定義得出$\frac{{|{AF}|}}{{|{FB}|}}$=$\frac{{y}_{1}+\frac{p}{2}}{{y}_{2}+\frac{p}{2}}$,即可得出結(jié)論.
解答 解:設(shè)直線(xiàn)l的方程為:x=y-$\frac{p}{2}$,A(x1,y1),B(x2,y2),
由x=y-$\frac{p}{2}$,代入x2=2py,可得y2-3py+$\frac{1}{4}$p2=0,
∴y1=$\frac{3-2\sqrt{2}}{2}$p,y2=$\frac{3+2\sqrt{2}}{2}$p,
從而,$\frac{{|{AF}|}}{{|{FB}|}}$=$\frac{{y}_{1}+\frac{p}{2}}{{y}_{2}+\frac{p}{2}}$=$3-2\sqrt{2}$.
故答案為:$3-2\sqrt{2}$.
點(diǎn)評(píng) 本題考查拋物線(xiàn)的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線(xiàn)的定義,得出$\frac{{|{AF}|}}{{|{FB}|}}$=$\frac{{y}_{1}+\frac{p}{2}}{{y}_{2}+\frac{p}{2}}$是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{\sqrt{6}}}{4}$ | B. | $\sqrt{15}$ | C. | $\frac{{3\sqrt{15}}}{4}$ | D. | $\frac{{3\sqrt{6}}}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 一解 | B. | 兩解 | C. | 一解或兩解 | D. | 無(wú)解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$ | B. | f(0.76)<f(60.5)<f(log0.76) | ||
| C. | $f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$ | D. | $f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {a|-1<a<3} | B. | {a|-2<a<4} | C. | {a|-2≤a≤4} | D. | {a|-1≤a≤3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com