欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,在四棱錐P-ABCD中,則面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.

(Ⅰ)求證:PO⊥平面ABCD;

(Ⅱ)求異面直線PD與CD所成角的大;

(Ⅲ)線段AD上是否存在點Q,使得它到平面PCD的距離為?若存在,求出 的值;若不存在,請說明理由.

本小題主要考查直線與平面的位置關(guān)系,異面直線所成角、點到平面的距離等基本知識,考查空間想象能力、邏輯思維能力和運算能力!  

   解法一:

  (Ⅰ)證明:在△PAD中PA=PD,O為AD中點,所以PO⊥AD,

又側(cè)面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,

所以PO⊥平面ABCD.

(Ⅱ)連結(jié)BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,

有OD∥BC且OD=BC,所以四邊形OBCD是平行四邊形,

所以O(shè)B∥DC.

由(Ⅰ)知,PO⊥OB,∠PBO為銳角,

所以∠PBO是異面直線PB與CD所成的角.

因為AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,

所以O(shè)B=,

在Rt△POA中,因為AP=,AO=1,所以O(shè)P=1,

在Rt△PBO中,tan∠PBO=

所以異面直線PB與CD所成的角是.

(Ⅲ)假設(shè)存在點Q,使得它到平面PCD的距離為.

   設(shè)QD=x,則,由(Ⅱ)得CD=OB=,

   在Rt△POC中,

所以PC=CD=DP, S△PCD=·=.

由VP-DQC=VQ-PCD,得所以存在點Q滿足題意,此時.

解法二:

(Ⅰ)同解法一.

(Ⅱ)以O(shè)為坐標原點,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系O-xyz,依題意,易得A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),

P(0,0,1),

    所以

所以異面直線PB與CD所成的角是arccos,

 (Ⅲ)假設(shè)存在點Q,使得它到平面PCD的距離為,

由(Ⅱ)知

設(shè)平面PCD的法向量為n=(x0,y0,z0).

則  n·=0,所以  -x0+ z0=0,

n·=0,    -x0+ y0=0, 
x0=y0=z0,    

x0=1,得平面PCD的一個法向量為n=(1,1,1).

設(shè)=,得解y=-或y=(舍去),

此時,所以存在點Q滿足題意,此時.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案