分析 (1)由PA=PB,OA=OB,可得OP⊥AB,再利用勾股定理與逆定理可得OP⊥OC,利用線面垂直的判定定理即可證明;
(2)在Rt△OAP中,OP=$\sqrt{A{P}^{2}-A{O}^{2}}$.再利用圓錐體積計算公式可得:以圓O為底面,P為頂點的幾何體的體積V=$\frac{1}{3}•π•O{A}^{2}•PO$.
解答 (1)證明:如圖所示,![]()
∵PA=PB,OA=OB,
∴OP⊥AB,
∴PA2=OA2+OP2=OC2+OP2=PC2,
∴OP⊥OC,
∵AB∩CD=O,
∴OP⊥平面⊙O所在平面.
(2)解:在Rt△OAP中,OP=$\sqrt{A{P}^{2}-A{O}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
∴以圓O為底面,P為頂點的幾何體的體積V=$\frac{1}{3}•π•O{A}^{2}•PO$=$\frac{1}{3}×π×{2}^{2}•2\sqrt{3}$=$\frac{8\sqrt{3}π}{3}$.
點評 本題考查了勾股定理與逆定理、線面垂直的判定定理、圓錐體積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 5或6 | D. | 6或7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 6 | C. | 2($\sqrt{2}$+$\sqrt{3}$) | D. | 2($\sqrt{2}$+$\sqrt{3}$)+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com