【題目】已知橢圓:
的左、右點(diǎn)分別為
點(diǎn)
在橢圓上,且![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)(1,0)作斜率為
的直線(xiàn)
交橢圓
于M、N兩點(diǎn),若
求直線(xiàn)
的方程;
(3)點(diǎn)P、Q為橢圓上的兩個(gè)動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),若直線(xiàn)
的斜率之積為
求證:
為定值.
【答案】(1)
;(2)
或y=-x+1;(3)5
【解析】
(1)由點(diǎn)
在橢圓
上,且
,列出方程組求出
,
,由此能求出橢圓的方程.
(2) 設(shè)直線(xiàn)l的方程為
,設(shè)
,
,
,
,聯(lián)立直線(xiàn)和橢圓的方程得到韋達(dá)定理,再利用數(shù)量積和韋達(dá)定理求出k的值,即得直線(xiàn)方程;
(3)設(shè)直線(xiàn)
,聯(lián)立
,求出
,同理求出
,證明
為定值.
(1)
橢圓
的左右焦點(diǎn)分別為
,
,
點(diǎn)
在橢圓
上,且
,
![]()
,解得
,
,
橢圓的方程為
.
(2)設(shè)直線(xiàn)l的方程為
,
設(shè)
,
,
,
,
由
,得
,
所以
,
又![]()
,
,
,
![]()
![]()
所以
,
所以
,
所以
,均滿(mǎn)足題意.
所以直線(xiàn)的方程為
或
.
(3)設(shè)直線(xiàn)
,
聯(lián)立方程組
,得
,
,
又直線(xiàn)
,
同理,得
,
,為定值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
是
的導(dǎo)函數(shù),則下列結(jié)論中錯(cuò)誤的個(gè)數(shù)是( )
①函數(shù)
的值域與
的值域相同;
②若
是函數(shù)
的極值點(diǎn),則
是函數(shù)
的零點(diǎn);
③把函數(shù)
的圖像向右平移
個(gè)單位長(zhǎng)度,就可以得到
的圖像;
④函數(shù)
和
在區(qū)間
內(nèi)都是增函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的離心率為
,橢圓
:
經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)
是橢圓
上的任意一點(diǎn),射線(xiàn)
與橢圓
交于點(diǎn)
,過(guò)點(diǎn)
的直線(xiàn)
與橢圓
有且只有一個(gè)公共點(diǎn),直線(xiàn)
與橢圓
交于
,
兩個(gè)相異點(diǎn),證明:
面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
和
,記
.
(1)若
,求
;
(2)若
,求
關(guān)于m的表達(dá)式;
(3)若數(shù)列
和
均是項(xiàng)數(shù)為
項(xiàng)的有窮數(shù)列.,現(xiàn)將
和
中的項(xiàng)一一取出,并按照從小到大的順序排成一列,得到
.求證:對(duì)于給定的
,
的所有可能取值的奇偶性相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
是無(wú)窮數(shù)列,其前n項(xiàng)
,
,
中的最大項(xiàng)記為
,第n項(xiàng)之后的所有項(xiàng)
,
,
,
中的最小項(xiàng)記為
數(shù)列
滿(mǎn)足
.
(1)若
,求
的通項(xiàng)公式
;
(2)若
,
,求數(shù)列
的通項(xiàng)公式![]()
(3)判斷命題“
是常數(shù)列的充分不必要條件是
為遞增的等差數(shù)列”的真假,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是
①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;
③方程
有無(wú)數(shù)個(gè)根; ④函數(shù)f(x)是增函數(shù).
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為實(shí)數(shù),函數(shù)
,![]()
(1)若
,求
的取值范圍;
(2)當(dāng)
時(shí),試判斷函數(shù)
在
上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若數(shù)列
中存在
,其中
,
,
,
,
及
均為正整數(shù),且
(
),則稱(chēng)數(shù)列
為“
數(shù)列”.
(1)若數(shù)列
的前
項(xiàng)和
,求證:
是“
數(shù)列”;
(2)若
是首項(xiàng)為1,公比為
的等比數(shù)列,判斷
是否是“
數(shù)列”,說(shuō)明理由;
(3)若
是公差為
(
)的等差數(shù)列且
(
),
,求證:數(shù)列
是“
數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
的反函數(shù)是
,解方程:
;
(2)設(shè)
,是否存在
,使得等式
成立?若存在,求出
的所有取值,如不存在,說(shuō)明理由;
(3)對(duì)于任意
,且
,當(dāng)
、
、
能作為一個(gè)三角形的三邊長(zhǎng)時(shí),
、
、
也總能作為某個(gè)三角形的三邊長(zhǎng),試探究
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com