分析:通過a=0,推出a1=0,則3a1<12.由f′n(x)=x2-(3an+n2)x+3n2an=(x-3an)(x-n2)=0,求出x1=3an,x2=n2.由函數(shù)的單調(diào)性知fn(x)在x=n2取得極小值.求出a2=1,a3=4,a4=3×4,考查規(guī)律,由此猜測:當(dāng)n≥3時,an=4×3n-3.然后用數(shù)學(xué)歸納法證明:當(dāng)n≥3時,3an>n2.
解答:解:由題意可知,當(dāng)a=0時,a1=0,則3a1<12.
由題設(shè)知f′n(x)=x2-(3an+n2)x+3n2an=(x-3an)(x-n2).
令f′n(x)=0,得x1=3an,x2=n2.
若3an<n2,則
當(dāng)x<3an時,f′n(x)>0,fn(x)單調(diào)遞增;
當(dāng)3an<x<n2時,f′n(x)<0,fn(x)單調(diào)遞減;
當(dāng)x>n2時,f′n(x)>0,fn(x)單調(diào)遞增.
故fn(x)在x=n2取得極小值.
所以a2=12=1
因為3a2=3<22,則,a3=22=4
因為3a3=12>33,則a4=3a3=3×4,
又因為3a4=36>42,則a5=3a4=32×4,
由此猜測:當(dāng)n≥3時,an=4×3n-3.
下面先用數(shù)學(xué)歸納法證明:當(dāng)n≥3時,3an>n2.
事實上,當(dāng)n=3時,由前面的討論知結(jié)論成立.
假設(shè)當(dāng)n=k(k≥3)時,3ak>k2成立,則由(2)知,ak+1=3ak>k2,
從而3ak+1-(k+1)2>3k2-(k+1)2=2k(k-2)+2k-1>0,
所以3ak+1>(k+1)2.
故當(dāng)n≥3時,3an>n2成立.
于是,當(dāng)n≥3時,an+1=3an,而a3=4,因此an=4×3n-3.
綜上所述,當(dāng)a=0時,a1=0,a2=1,an=4×3n-3(n≥3).
點評:本題是中檔題,考查數(shù)列的求法,注意到函數(shù)的導(dǎo)數(shù)與極小值的關(guān)系,注意數(shù)列的規(guī)律,數(shù)學(xué)歸納法的應(yīng)用,考查計算能力,轉(zhuǎn)化思想.