分析 由已知及正弦定理可得sinB的值,結(jié)合B為三角形內(nèi)角,利用特殊角的三角函數(shù)值即可得解.
解答 解:∵a=4,b=4$\sqrt{3}$,∠A=30°,
∴由正弦定理可得:sinB=$\frac{b•sinA}{a}$=$\frac{4\sqrt{3}×\frac{1}{2}}{4}$=$\frac{\sqrt{3}}{2}$,
又∵B為三角形內(nèi)角,
∴B=$\frac{π}{3}$,或$\frac{2π}{3}$.
故答案為:$\frac{π}{3}$,或$\frac{2π}{3}$.
點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\overrightarrow{a}$•$\overrightarrow$=2 | B. | $\overrightarrow{a}$∥$\overrightarrow$ | C. | |$\overrightarrow{a}$|=|$\overrightarrow$| | D. | $\overrightarrow$⊥($\overrightarrow{a}$+$\overrightarrow$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 150° | B. | 135° | C. | 300° | D. | 60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{9}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $({\frac{1}{2},\sqrt{e}})$ | B. | $[{\frac{1}{2},\sqrt{e}})$ | C. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$ | D. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com