分析 (1)設(shè)t=f(x),利用換元法,可將已知函數(shù)化為一個(gè)二次函數(shù),根據(jù)二次函數(shù)在定區(qū)間上的最值問題,即可得到h(a)的解析式.
(2)由(1)中h(a)的解析式,易得在h(a)在(3,+∞)上為減函數(shù),進(jìn)而根據(jù)h(a)的定義域?yàn)閇n,m]時(shí)值域?yàn)閇n2,m2]構(gòu)造關(guān)于m,n的不等式組,如果不等式組有解,則存在滿足條件的m,n的值;若無解,則不存在滿足條件的m,n的值.
解答 解:(1)令t=f(x),
∵函數(shù)f(x)=log2x,x∈[2,8],
∴t∈[1,3],y=g(x)=t2-2at+3,
當(dāng)a≤1時(shí),y=t2-2at+3在[1,3]上為增函數(shù),此時(shí)當(dāng)t=1時(shí),h(a)=4-2a,
當(dāng)1<a<2時(shí),y=t2-2at+3在[1,a]上為減函數(shù),在[a,3]上為增函數(shù),此時(shí)當(dāng)t=a時(shí),h(a)=-a2+3,
當(dāng)a≥2時(shí),y=t2-2at+3在[1,3]上為減函數(shù),此時(shí)當(dāng)t=2時(shí),h(a)=7-4a,
綜上所述,h(a)=$\left\{\begin{array}{l}4-2a,a≤1\\-{a}^{2}+3,1<a<2\\ 7-4a,a≥2\end{array}\right.$,
(2)由(1)得m>n>3時(shí),h(a)在定義域?yàn)閇n,m]中為減函數(shù),
若此時(shí)值域?yàn)閇n2,m2].
則$\left\{\begin{array}{l}7-4n={m}^{2}\\ 7-4m={n}^{2}\end{array}\right.$,
此時(shí)n+m=4,與m>n>3矛盾,故不存在滿足條件的m,n的值;
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),熟練掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 60° | B. | 120° | C. | 45° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -3 | B. | -6 | C. | -$\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{3}$π | B. | -$\frac{5}{3}$π | C. | $\frac{5}{6}$π | D. | -$\frac{5}{6}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,1) | B. | (-∞,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com