(本小題滿分13分)
給定橢圓
,稱圓心在坐標原點
,半徑為
的圓是橢圓
的“伴隨圓”. 若橢圓C的一個焦點為
,其短軸上的一個端點到
距離為
.
(Ⅰ)求橢圓
及其“伴隨圓”的方程;
(Ⅱ)若過點
的直線
與橢圓C只有一個公共點,且
截橢圓C的“伴隨圓”所得的弦長為
,求
的值;
(Ⅲ)過橢圓C“伴橢圓”上一動點Q作直線
,使得
與橢圓C都只有一個公共點,試判斷直線
的斜率之積是否為定值,并說明理由.
解:(Ⅰ)由題意得:
,半焦距
則
橢圓C方程為
“伴隨圓”方程為
……………3分
(Ⅱ)則設(shè)過點
且與橢圓有一個交點的直線
為:
,
則
整理得![]()
所以
,解
① ……………5分
又因為直線
截橢圓
的“伴隨圓”所得的弦長為
,
則有
化簡得
② …………
…7分
聯(lián)立①②解得,
,
所以
,
,則
……………8分
(Ⅲ)當(dāng)
都有斜率時,設(shè)點
其中
,
設(shè)經(jīng)過點
與橢圓只有一個公共點的直線為
,
由
,
消去
得到
……………9分
即
,
,
經(jīng)過化簡得到:
, ……………11分
因為
,所以有
,
設(shè)
的斜率分別為
,因為
與橢圓都只有一個公共點,
所以
滿足方程
,
因而
,即直線
的斜率之積是為定值
……………13分
解析
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù)![]()
.
(1)求函數(shù)
的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)
在區(qū)間
上的圖象.
(3)設(shè)0<x<
,且方程
有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為
的函數(shù)
是奇函數(shù).
(1)求
的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合
,
,
.
(1)求
(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數(shù)
,數(shù)列{
}的首項
.
(1) 求函數(shù)
的表達式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列
的前
項和![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com