分析 (1)運(yùn)用數(shù)列的遞推式,結(jié)合等比數(shù)列的定義和通項(xiàng)公式,可得an=($\frac{1}{2}$)n,n∈N*,即可得到所求Sn;
(2)求得b1=d=1,則bn=1+n-1=n,n∈N*;則anbn=n•($\frac{1}{2}$)n,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,即可得到所求和.
解答 解:(1)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=1,①
當(dāng)n=1時(shí),有a1=S1,可得2a1=1,即a1=$\frac{1}{2}$;
當(dāng)n≥2時(shí),Sn-1+an-1=1,②
①-②可得Sn-Sn-1+an-an-1=0,
2an=an-1,可得{an}為首項(xiàng)為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數(shù)列,
即有an=($\frac{1}{2}$)n,n∈N*,
數(shù)列{bn}為公差為d的等差數(shù)列,且b1+b2=b3=3,
可得2b1+d=b1+2d=3,
解得b1=d=1,
則bn=1+n-1=n,n∈N*;
(2)anbn=n•($\frac{1}{2}$)n,
前n項(xiàng)和Tn=1•($\frac{1}{2}$)+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+(n-1)•($\frac{1}{2}$)n-1+n•($\frac{1}{2}$)n,
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+3•($\frac{1}{2}$)4+…+(n-1)•($\frac{1}{2}$)n+n•($\frac{1}{2}$)n+1,
上面兩式相減可得,$\frac{1}{2}$Tn=($\frac{1}{2}$)+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1,
化簡(jiǎn)可得,Tn=2-(n+2)•($\frac{1}{2}$)n.
點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的定義、通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,考查運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 8$\sqrt{2}$ | B. | 6$\sqrt{2}$ | C. | 5$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com