| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北武漢部分重點(diǎn)中學(xué)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(帶解析) 題型:解答題
(本小題滿分14分) 已知在單位圓x²+y²=1上任取一點(diǎn)M,作MN⊥x軸,垂足為N,
= 2
.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡
的方程;
(Ⅱ)設(shè)點(diǎn)
,點(diǎn)
為曲線
上任一點(diǎn),求點(diǎn)
到點(diǎn)
距離的最大值
;
(Ⅲ)在
的條件下,設(shè)△
的面積為
(
是坐標(biāo)原點(diǎn),
是曲線
上橫坐標(biāo)為
的點(diǎn)),以
為邊長(zhǎng)的正方形的面積為
.若正數(shù)
滿足
,問
是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題
(本小題滿分14分) 已知在單位圓x²+y²=1上任取一點(diǎn)M,作MN⊥x軸,垂足為N,
= 2
.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡
的方程;
(Ⅱ)設(shè)點(diǎn)
,點(diǎn)
為曲線
上任一點(diǎn),求點(diǎn)
到點(diǎn)
距離的最大值
;
(Ⅲ)在
的條件下,設(shè)△
的面積為
(
是坐標(biāo)原點(diǎn),
是曲線
上橫坐標(biāo)為
的點(diǎn)),以
為邊長(zhǎng)的正方形的面積為
.若正數(shù)
滿足
,問
是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年遼寧省營(yíng)口市高一上學(xué)期期末檢測(cè)數(shù)學(xué)試卷 題型:解答題
.(本小題滿分12分)
已知點(diǎn)
,一動(dòng)圓過點(diǎn)
且與圓
內(nèi)切,
(1)求動(dòng)圓圓心的軌跡
的方程;
(2)設(shè)點(diǎn)
,點(diǎn)
為曲線
上任一點(diǎn),求點(diǎn)
到點(diǎn)
距離的最大值
;
(3)在
的條件下,設(shè)△
的面積為
(
是坐標(biāo)原點(diǎn),
是曲線
上橫坐標(biāo)為
的點(diǎn)),以
為邊長(zhǎng)的正方形的面積為
.若正數(shù)
滿足
,問
是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山西省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:填空題
給定下列四個(gè)命題,其中為真命題的是 (填上所有真命題的序號(hào))
1)命題“若
”的逆命題.
2)
是
的充分不必要條件.
3)已知雙曲線
和橢圓
的離心率之積大于1,則以
為邊長(zhǎng)的三角形是鈍角三角形.
4)![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com