【題目】如圖,已知四棱錐
中,底面
是矩形,
,
,
.
![]()
(1)求證:平面
平面
;
(2)求直線
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2)
.
【解析】
(1)取
,
的中點
,
,連接
,
,
,利用等邊三角形和等腰三角形的性質(zhì)、勾股定理的逆定理,結(jié)合線面垂直的判定定理、面面垂直的判定定理進(jìn)行證明即可;
(2)解法一:利用線面垂直的判定定理、平行線的性質(zhì),結(jié)合三棱錐體積公式進(jìn)行求解即可;
解法二:建立空間直角坐標(biāo)系,利用兩點間距離公式結(jié)合已知求出點
的坐標(biāo),最后利用空間向量夾角公式進(jìn)行求解即可.
解:(1)如圖,取
,
的中點
,
,連接
,
,
,
因為
,
,
所以,
,
,
又
,
所以,
,
又因為
,所以
,
所以
,即
,
平面
,
所以
平面
,而
平面
,
所以平面
平面
;
![]()
(2)解法一:設(shè)
到平面
的距離為
,
因為
,
,
所以
,
由(1)
,
,又
,所以
,
平面
,
所以
平面
,因為
,所以
點到平面
的距離為
,
所以
,
所以
,
故直線
與平面
所成角的正弦值為
.
解法二:建系法
如圖,建立空間坐標(biāo)系,則
,
,
,
,
設(shè)
,由
,
得
![]()
即
,設(shè)平面
的法向量為
,
因為
,
,
所以
,令
,可得
,
于是
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)PM2.5(單位:
)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴(yán)重:
PM2.5 日均濃度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 |
|
空氣質(zhì)量級別 | 一級 | 二級 | 三級 | 四級 | 五級 | 六級 |
空氣質(zhì)量類型 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
甲乙兩城市2020年5月份中的15天對空氣質(zhì)量指數(shù)PM2.5進(jìn)行監(jiān)測,獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:
![]()
(1)根據(jù)你所學(xué)的統(tǒng)計知識估計甲乙兩城市15天內(nèi)哪個城市空氣質(zhì)量總體較好?并簡要說明理由.
(2)在15天內(nèi)任取1天,估計甲乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;
(3)在乙城市15個監(jiān)測數(shù)據(jù)中任取2個,設(shè)
為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(
,
)的部分圖象如圖所示,則下列結(jié)論正確的是( )
![]()
A.![]()
B.若把函數(shù)
的圖像向左平移
個單位,則所得函數(shù)是奇函數(shù)
C.若把
的橫坐標(biāo)縮短為原來的
倍,縱坐標(biāo)不變,得到的函數(shù)在
上是增函數(shù)
D.
,若
恒成立,則
的最小值為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間
上的函數(shù)
,
.
(Ⅰ)證明:當(dāng)
時,
;
(Ⅱ)若曲線
過點
的切線有兩條,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年,某省將實施新高考,
年秋季入學(xué)的高一學(xué)生是新高考首批考生,新高考不再分文理科,采用
模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各
分,另外,考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物
門科目中自選
門參加考試(
選
),每科目滿分
分.為了應(yīng)對新高考,某高中從高一年級
名學(xué)生(其中男生
人,女生
人)中,采用分層抽樣的方法從中抽取n名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的n名學(xué)生中含女生
人,求n的值及抽取到的男生人數(shù);
(2)學(xué)校計劃在高一上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的
名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下面表格是根據(jù)調(diào)查結(jié)果得到的
列聯(lián)表,請將下面的列聯(lián)表補充完整,并判斷是否有
的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;
選擇“物理” | 選擇“歷史” | 總計 | |
男生 | 10 | ||
女生 | 30 | ||
總計 |
(3)在抽取到的
名女生中,在(2)的條件下,按選擇的科目進(jìn)行分層抽樣,抽出
名女生,了解女生對“歷史”的選課意向情況,在這
名女生中再抽取
人,求這
人中選擇“歷史”的人數(shù)為
人的概率.
參考數(shù)據(jù):
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知焦點為
的拋物線
上有一動點
,過點
作拋物線的切線
交
軸于點
.
![]()
(1)判斷線段
的中垂線是否過定點,若是求出定點坐標(biāo),若不是說明理由;
(2)過點
作
的垂線交拋物線于另一點
,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“支付寶捐步”已經(jīng)成為當(dāng)下最熱門的健身方式,為了了解是否使用支付寶捐步與年齡有關(guān),研究人員隨機抽取了5000名使用支付寶的人員進(jìn)行調(diào)查,所得情況如下表所示:
50歲以上 | 50歲以下 | |
使用支付寶捐步 | 1000 | 1000 |
不使用支付寶捐步 | 2500 | 500 |
(1)由上表數(shù)據(jù),能否有99.9%的把握認(rèn)為是否使用支付寶捐步與年齡有關(guān)?
(2)55歲的老王在了解了捐步功能以后開啟了自己的捐步計劃,可知其在捐步的前5天,捐步的步數(shù)與天數(shù)呈線性相關(guān).
第x天 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
步數(shù) | 4000 | 4200 | 4300 | 5000 | 5500 |
(i)根據(jù)上表數(shù)據(jù),建立
關(guān)于
的線性回歸方程
;
(ii)記由(i)中回歸方程得到的預(yù)測步數(shù)為
,若從5天中任取3天,記
的天數(shù)為X,求X的分布列以及數(shù)學(xué)期望.
附參考公式與數(shù)據(jù):
,
;K2=
;
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上一動點A的坐標(biāo)為
.
(1)求點A的軌跡E的方程;
(2)點B在軌跡E上,且縱坐標(biāo)為
.
(i)證明直線AB過定點,并求出定點坐標(biāo);
(ii)分別以A,B為圓心作與直線
相切的圓,兩圓公共弦的中點為H,在平面內(nèi)是否存在定點P,使得
為定值?若存在,求出點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,且橢圓上一點
的坐標(biāo)為
.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
交于
,
兩點,且以線段
為直徑的圓過橢圓的右頂點
,求
面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com