分析 (I)Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$(n=1,2,3,…),當(dāng)n=1時(shí),a1=S1=$\frac{4}{3}{a}_{1}$-$\frac{4}{3}$+$\frac{2}{3}$,解得a1.
(II)當(dāng)n≥2時(shí),Sn-1=$\frac{4}{3}{a}_{n-1}$-$\frac{1}{3}×{2}^{n}$+$\frac{2}{3}$,化為:an=4an-1+2n.變形為${a}_{n}+{2}^{n}$=$4({a}_{n-1}+{2}^{n-1})$,即可得出.
解答 (I)解:∵Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$(n=1,2,3,…),
∴當(dāng)n=1時(shí),a1=S1=$\frac{4}{3}{a}_{1}$-$\frac{4}{3}$+$\frac{2}{3}$,解得a1=2.
(II)證明:當(dāng)n≥2時(shí),Sn-1=$\frac{4}{3}{a}_{n-1}$-$\frac{1}{3}×{2}^{n}$+$\frac{2}{3}$,
可得an=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$-($\frac{4}{3}{a}_{n-1}$-$\frac{1}{3}×{2}^{n}$+$\frac{2}{3}$),
化為:an=4an-1+2n.
∴${a}_{n}+{2}^{n}$=$4({a}_{n-1}+{2}^{n-1})$,
∴數(shù)列{an+2n}是等比數(shù)列,首項(xiàng)為4,公比為4.
∴an+2n=4n,
∴an=4n-2n.
點(diǎn)評(píng) 本題考查了遞推關(guān)系的應(yīng)用、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{a}$+$\frac{1}$=1 | B. | $\frac{1}{a}$+$\frac{1}{2b}$=1 | C. | $\frac{2}{a}$+$\frac{1}$=1 | D. | $\frac{1}{2a}$+$\frac{1}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 15m | B. | 5$\sqrt{6}$m | C. | 10$\sqrt{6}$m | D. | 15$\sqrt{6}$m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com