設(shè)函數(shù)![]()
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),若
恒成立,求
的取值范圍.
(1)函數(shù)
單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
;(2)
.
解析試題分析:(1)此類題目考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解法是:求函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于零,解得單調(diào)增區(qū)間(注意函數(shù)的定義域),令導(dǎo)數(shù)小于零,解得單調(diào)減區(qū)間(注意定義域);(2)先將不等式
在
恒成立問題轉(zhuǎn)化為
在
恒成立問題,然后可用兩種方法求出參數(shù)的范圍,法一是:令
,通過導(dǎo)數(shù)求出該函數(shù)的最小值,由這個(gè)最小值大于或等于0即可解出
的取值范圍(注意題中所給的
);法二是:先分離參數(shù)得
,再令
,只須求出該函數(shù)的最小值
,從而
,同時(shí)結(jié)合題中所給
的范圍可得參數(shù)
的取值范圍.
試題解析:(1)函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/9/1udnn4.png" style="vertical-align:middle;" /> 1分
2分
當(dāng)
時(shí),
,
為增函數(shù)
當(dāng)
時(shí),
,
為減函數(shù)
當(dāng)
時(shí),
,
為增函數(shù)
所以,函數(shù)
單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
5分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2c/8/1b0mk4.png" style="vertical-align:middle;" />,
所以![]()
即![]()
法一:令
7分
所以![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/24/a/aiegf.png" style="vertical-align:middle;" />在
時(shí)是增函數(shù) 8分
所以
9分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ea/8/fzgni1.png" style="vertical-align:middle;" />,所以
, 10分
所以
在
為增函數(shù)
要使
恒成立,只需
11分
所以
12分
法二:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/eb/a/6e5yw1.png" style="vertical-align:middle;" />,所以![]()
6
令
7分![]()
8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/7/1xliv2.png" style="vertical-align:middle;" />,所以
9分
因此
時(shí),
,那么
在
上為增函數(shù) 10分
所以![]()
所以
1
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ln x+
x2-(a+1)x(a>0,a為常數(shù)).
(1)討論f(x)的單調(diào)性;
(2)若a=1,證明:當(dāng)x>1時(shí),f(x)<
x2-
-
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個(gè)極值點(diǎn).
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量m=(ex,ln x+k),n=(1,f(x)],m∥n(k為常數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=-x2+2ax(a為正實(shí)數(shù)),若對于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
,求證:當(dāng)
時(shí),
;
(2)若
在區(qū)間
上單調(diào)遞增,試求
的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)當(dāng)
時(shí),求函數(shù)
在
處的切線方程;
(2)若函數(shù)
在區(qū)間(1,2)上不是單調(diào)函數(shù),試求
的取值范圍;
(3)已知
,如果存在
,使得函數(shù)![]()
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(Ⅰ)若
在x=
處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)
的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是二次函數(shù),不等式
的解集是
,且
在點(diǎn)
處的切線與直線
平行.
(1)求
的解析式;
(2)是否存在t∈N*,使得方程
在區(qū)間
內(nèi)有兩個(gè)不等的實(shí)數(shù)根?
若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com