欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.曲線f(x)=$\frac{1}{2}$x2在點(diǎn)(1,$\frac{1}{2}$)處的切線方程為2x-2y-1=0.

分析 求出導(dǎo)函數(shù),令x=1求出切線的斜率;利用點(diǎn)斜式寫出直線的方程.

解答 解:f′(x)=x
當(dāng)x=1得f′(1)=1
所以切線方程為y-$\frac{1}{2}$=x-1
即x-y-$\frac{1}{2}$=0
故答案為:2x-2y-1=0.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義:在切點(diǎn)處的導(dǎo)數(shù)值是切線的斜率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列不等式一定成立的是( 。
①lg(x2+$\frac{1}{4}$)≥lg x(x>0);、趕in x+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z);
③x2+1≥2|x|(x∈R);  ④$\frac{1}{{x}^{2}+1}$>1(x∈R).
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C與y軸相切,圓心C(1,-2)
(1)求圓C的方程
(2)是否存在斜率為1的直線l,使以l被圓C截得的弦AB為直徑的圓過原點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在直四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD是直角梯形,其中AB⊥AD,AB=BC=1且AD=$\sqrt{2}$AA1=2.
(1)求證:直線C1D⊥平面ACD1;
(2)試求三棱錐A1-ACD1的體積.
(3)求A1C與平面ADD1A1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,直三棱柱ABC-A1B1C1,底面三角形ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別為A1B1、AB的中點(diǎn).
(1)求證:平面A1NC∥平面BMC1;(2)求異面直線A1C與C1N所成角的余弦值;
(3)求直線A1N與平面ACC1A1所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平行六面體ABCD-A1B1C1D1中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示向量$\overrightarrow{A{C}_{1}}$,$\overrightarrow{B{D}_{1}}$,$\overrightarrow{D{B}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義在R上的函數(shù)y=f(x)是偶函數(shù),且當(dāng)x≥0時(shí),f(x)=2x-1
(I)當(dāng)x∈[-1,m](m>-1)時(shí),求f(x)的值域;
(Ⅱ)x∈[a,b],函數(shù)的值域?yàn)閇$\frac{1}{2}$,2],求實(shí)數(shù)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,則($\frac{x}{a}$+$\frac{1}{x}$+$\sqrt{2}$)4的展開式中常數(shù)項(xiàng)為$\frac{23}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC的三邊a,b,c所對(duì)的角分別為A,B,C且sinA:sinB:sinC=2:3:4.若△ABC的面積為12$\sqrt{15}$,則△ABC的外接圓的半徑R=$\frac{32\sqrt{15}}{15}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案