分析 (Ⅰ)求得f(x)的導(dǎo)數(shù),可得切線的斜率,由條件可得a的方程,解方程可得a的值;
(Ⅱ)求出g(x)的導(dǎo)數(shù),可得單調(diào)區(qū)間和極值,且為最值;
(Ⅲ)顯然g(x)=f'(x),且g(0)=0,運(yùn)用零點(diǎn)存在定理可得g(x)的零點(diǎn)范圍,可設(shè)g(x)=f'(x)存在兩個零點(diǎn),分別為0,x0.討論x<0時,0<x<x0時,x>x0時,g(x)的符號,可得f(x)的極值,進(jìn)而得到f(x)在(-∞,0)上單調(diào)遞增,即可得證.
解答 解:(Ⅰ)函數(shù)f(x)=ex-x2+ax的導(dǎo)數(shù)為:
f′(x)=ex-2x+a,
由已知可得f′(0)=0,所以1+a=0,得a=-1.
(Ⅱ)g'(x)=ex-2,令g'(x)=0,得x=ln2,
所以x,g'(x),g(x)的變化情況如表所示:
| x | (-∞,ln2) | ln2 | (ln2,+∞) |
| g'(x) | - | 0 | + |
| g(x) | 遞減 | 極小值 | 遞增 |
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查函數(shù)零點(diǎn)存在定理的運(yùn)用,以及轉(zhuǎn)化思想,考查化簡整理的運(yùn)算能力,屬于難題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -4 | B. | -3 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $2\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com