【題目】(某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費(fèi)收入)的頻率分布直方圖如圖所示:![]()
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn)若每份保單的保費(fèi)在
元的基礎(chǔ)上每增加
元,對應(yīng)的銷量
(萬份)與
(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下
組
與
的對應(yīng)數(shù)據(jù):
|
|
|
|
|
|
銷量 |
|
|
|
|
|
(。└鶕(jù)數(shù)據(jù)計(jì)算出銷量
(萬份)與
(元)的回歸方程為
;
(ⅱ)若把回歸方程
當(dāng)作
與
的線性關(guān)系,用(Ⅰ)中求出的平均獲益率估計(jì)此產(chǎn)品的獲益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示: ![]()
【答案】解:(Ⅰ)區(qū)間中值依次為:0.05,0.15,0.25,0.35,0.45,0.55,取值概率依次為:0.1,0.2,0.25,0.3,0.1,0.05,
平均獲益率為 ![]()
(Ⅱ)(i)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
![]()
則
即
.
(ii)設(shè)每份保單的保費(fèi)為
元,則銷量為
,則保費(fèi)獲益為
萬元, ![]()
當(dāng)
元時(shí),保費(fèi)收入最大為
萬元,保險(xiǎn)公司預(yù)計(jì)獲益為
萬元.
【解析】(1)由圖可知求出滿足條件的概率值進(jìn)而求出平均獲益率的值。(2)根據(jù)圖表求出線性回歸的樣本點(diǎn)中心進(jìn)而求出回歸直線方程。(3)根據(jù)題意求出函數(shù)的解析式利用二次函數(shù)在指定區(qū)間上的最值。
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)在閉區(qū)間上的最值和頻率分布直方圖,掌握當(dāng)
時(shí),當(dāng)
時(shí),
;當(dāng)
時(shí)在
上遞減,當(dāng)
時(shí),
;頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間中,
是兩條不同的直線,
是兩個(gè)不同的平面,則下列命題中的真命題是( )
A.若
,
,則 ![]()
B.若
,
,
,則 ![]()
C.若
,
,則 ![]()
D.若
,
則 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
與
軸的交點(diǎn)為
,且圖象上兩對稱軸之間的最小距離為
,則使
成立的
的最小值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過12噸且不超過14噸時(shí),超過12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過14噸時(shí),超過14噸部分按7.8元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照
分成8組,制成了如圖1所示的頻率分布直方圖.![]()
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
(。┈F(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水量都超過12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)
(元)與月份
的散點(diǎn)圖,其擬合的線性回歸方程是
.若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的最小正周期是
,若將其圖象向右平移
個(gè)單位后得到的圖象關(guān)于
軸對稱,則函數(shù)
的圖象( )
A.關(guān)于直線
對稱
B.關(guān)于直線
對稱
C.關(guān)于點(diǎn)
對稱
D.關(guān)于點(diǎn)
對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在
和
兩個(gè)空白框中,可以分別填入( 。![]()
A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=( ) ![]()
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,圓
,圓
.
(Ⅰ)在以
為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓
的極坐標(biāo)方程,并求出圓
的交點(diǎn)坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求出
與
的公共弦的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求證:當(dāng)
時(shí),函數(shù)
在
上,存在唯一的零點(diǎn);
(2)當(dāng)
時(shí),若存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com