分析 配方得到$f(x)=\frac{1}{2}({2}^{x}-3)^{2}+\frac{1}{2}$,令2x=t,t$∈[\sqrt{2},4]$,設(shè)y=f(x),從而得到$y=\frac{1}{2}(t-3)^{2}+\frac{1}{2}$,這樣便可得出y的最大、最小值,以及對(duì)應(yīng)的t及x的取值,從而便可得出y=f(x)的值域.
解答 解:$f(x)=\frac{1}{2}({2}^{x}-3)^{2}+\frac{1}{2}$;
令${2}^{x}=t,t∈[\sqrt{2},4]$,設(shè)y=f(x),則:
$y=\frac{1}{2}(t-3)^{2}+\frac{1}{2}$;
∴t=3,即2x=3,x=log23時(shí),y取最小值$\frac{1}{2}$;
t=$\sqrt{2}$,即${2}^{x}=\sqrt{2}$,x=$\frac{1}{2}$時(shí),y取最大值$\frac{1}{2}(\sqrt{2}-3)^{2}+\frac{1}{2}=6-3\sqrt{2}$;
∴y=f(x)的值域?yàn)閇$\frac{1}{2},6-3\sqrt{2}$].
點(diǎn)評(píng) 考查函數(shù)值域的概念,配方法求二次函數(shù)在閉區(qū)間上的值域,求二次函數(shù)的最值,要熟悉二次函數(shù)的圖象.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分非必要條件 | B. | 必要非充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,+∞) | B. | ($\frac{1}{6}$,+∞) | C. | (-∞,1) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com