【題目】已知函數(shù)
,其中
,
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)若不等式
恒成立,求實數(shù)
的取值范圍.
【答案】(Ⅰ)當
時,
的單調(diào)遞增區(qū)間為
;當
時,
的單調(diào)遞增區(qū)間為
,單調(diào)減區(qū)間為
;(Ⅱ)
.
【解析】
(Ⅰ)求出函數(shù)的定義域,再求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出,
(Ⅱ)不等式
恒成立轉(zhuǎn)化為
,則問題轉(zhuǎn)化為
恒成立時,求
的取值范圍,根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出.
(Ⅰ)函數(shù)的定義域為
,
.
當
時,
,函數(shù)
在區(qū)間
上是增函數(shù);
當
時,由
,得
;由
,得
,
所以函數(shù)
在區(qū)間
上是增函數(shù),在區(qū)間
上是減函數(shù).
綜上:當
時,
的單調(diào)遞增區(qū)間為
,當
時,
的單調(diào)遞增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)不等式
.
當
時,取
,
,不合題意;
當
時,令
,則問題轉(zhuǎn)化為
恒成立時,求
的取值范圍.
由于
.令
,得
,
當
時,
,當
時,
,
所以,函數(shù)
的最大值為
,
于是由題意知
,解得
,
故實數(shù)
的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
的最大值為
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)當
時,討論函數(shù)
的單調(diào)性;
(Ⅲ)當
時,令
,是否存在區(qū)間
.使得函數(shù)
在區(qū)間
上的值域為
若存在,求實數(shù)
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
大學(xué)就業(yè)部從該大學(xué)2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機抽取了100人進行月薪情況的問卷調(diào)查,經(jīng)統(tǒng)計發(fā)現(xiàn),他們的月薪收入在3000元到10000元之間,具體統(tǒng)計數(shù)據(jù)如表:
月薪(百萬) |
|
|
|
|
|
|
|
人數(shù) | 2 | 15 | 20 | 15 | 24 | 10 | 4 |
(1)經(jīng)統(tǒng)計發(fā)現(xiàn),該大學(xué)2018屆的大學(xué)本科畢業(yè)生月薪
(單位:百元)近似地服從正態(tài)分布
,其中
近似為樣本平均數(shù)
(每組數(shù)據(jù)取區(qū)間的中點值).若
落在區(qū)間
的左側(cè),則可認為該大學(xué)本科生屬“就業(yè)不理想”的學(xué)生,學(xué)校將聯(lián)系本人,咨詢月薪過低的原因,為以后的畢業(yè)生就業(yè)提供更好的指導(dǎo)意見.現(xiàn)該校2018屆大學(xué)本科畢業(yè)生張茗的月薪為3600元,試判斷張茗是否屬于“就業(yè)不理想”的學(xué)生;
(2)①將樣本的頻率視為總體的概率,若
大學(xué)領(lǐng)導(dǎo)決定從
大學(xué)2018屆所有本畢業(yè)生中任意選取5人前去探訪,記這5人中月薪不低于8000元的人數(shù)為
,求
的數(shù)學(xué)期望與方差;
②在(1)的條件下,中國移動贊助了
大學(xué)的這次社會調(diào)查活動,并為這次參與調(diào)查的大學(xué)本科畢業(yè)生制定了贈送話費的活動,贈送方式為:月薪低于
的獲贈兩次隨機話費,月薪不低于
的獲贈一次隨機話費;每次贈送的話費及對應(yīng)的概率分別為:
贈送話費(單位:元) | 50 | 100 | 150 |
概率 |
|
|
|
則張茗預(yù)期獲得的話費為多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)美麗新農(nóng)村,某村對本村布局重新進行了規(guī)劃,其平面規(guī)劃圖如圖所示,其中平行四邊形
區(qū)域為生活區(qū),
為橫穿村莊的一條道路,
區(qū)域為休閑公園,
,
,
的外接圓直徑為
.
![]()
(1)求道路
的長;
(2)該村準備沿休閑公園的邊界修建柵欄,以防村中的家畜破壞公園中的綠化,試求柵欄總長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,四邊形
是邊長為2的菱形,
,
.
![]()
(1)證明:平面
平面
;
(2)當直線
與平面
所成的角為30°時,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知![]()
(1)求
的軌跡![]()
(2)過軌跡
上任意一點
作圓
的切線
,設(shè)直線
的斜率分別是
,試問在三個斜率都存在且不為0的條件下,
是否是定值,請說明理由,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
![]()
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中從事技術(shù)和運營崗位的人數(shù)占總?cè)藬?shù)的三成以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com