分析 根據(jù)橢圓的方程,得|PF1|+|PF2|=2a=10,結(jié)合基本不等式可知:當(dāng)且僅當(dāng)|PF1|=|PF2|=5時(shí),點(diǎn)P到兩焦點(diǎn)的距離之積為m有最大值25,并且此時(shí)點(diǎn)P位于橢圓短軸的頂點(diǎn)處,可得點(diǎn)P坐標(biāo)為(0,3)或(0,-3).
解答 解:∵橢圓方程為$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,∴a=5,b=3,
設(shè)橢圓的左右焦點(diǎn)分別為F1、F2,得|PF1|+|PF2|=2a=10,
∵|PF1|+|PF2|≥2$\sqrt{|P{F}_{1}|•|P{F}_{2}|}$,
∴點(diǎn)P到兩焦點(diǎn)的距離之積m滿足:m=|PF1|×|PF2|≤($\frac{|P{F}_{1}|+|P{F}_{2}|}{2}$)2=25,
當(dāng)且僅當(dāng)|PF1|=|PF2|=5時(shí),m有最大值25.
此時(shí),點(diǎn)P位于橢圓短軸的頂點(diǎn)處,得P(0,3)或(0,-3).
故答案為:(0,3)或(0,-3).
點(diǎn)評(píng) 本題給出橢圓的方程,求其上一點(diǎn)到兩個(gè)焦點(diǎn)距離之積的最大值,著重考查了橢圓的簡(jiǎn)單幾何性質(zhì)和基本不等式求最值等知識(shí),屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x1>x2 | B. | x1<x2 | C. | ${x}_{1}^{2}$<${x}_{2}^{2}$ | D. | x1+x2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}+i$ | B. | $\sqrt{2}-i$ | C. | $1+\sqrt{2}i$ | D. | $1-\sqrt{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①Ⅲ,②Ⅰ | B. | ①Ⅰ,②Ⅱ | C. | ①Ⅱ,②Ⅲ | D. | ①Ⅲ,②Ⅱ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $2\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\sqrt{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,e) | B. | (0,1),(1,e) | C. | (e,+∞) | D. | (-∞,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com