【答案】
分析:(1)根據(jù)函數(shù)f(x)=x
3-3ax
2+2bx在x=1處有極小值-1先求出函數(shù)中的參數(shù)a,b的值,再令導(dǎo)數(shù)等于0,求出極值點(diǎn),判斷極值點(diǎn)左右兩側(cè)導(dǎo)數(shù)的正負(fù),當(dāng)左正右負(fù)時(shí)有極大值,當(dāng)左負(fù)右正時(shí)有極小值.再代入原函數(shù)求出極大值和極小值.
(2)列表比較函數(shù)的極值與端點(diǎn)函數(shù)值的大小,端點(diǎn)函數(shù)值與極大值中最大的為函數(shù)的最大值,端點(diǎn)函數(shù)值與極小值中最小的為函數(shù)的最小值.
解答:解:(1)函數(shù)f(x)=x
3-3ax
2+2bx的導(dǎo)數(shù)為f′(x)=3x
2-6ax+2b
∵函數(shù)f(x)=x
3-3ax
2+2bx在x=1處有極小值-1,∴f′(1)=0,f(1)=-1
即3-6a+2b=0,1-3a+2b=-1,解得a=

,b=-

∴f(x)=x
3-x
2-x,f′(x)=3x
2-2x-1
令f′(x)=0,即3x
2-2x-1=0,解得,x=-

,或x=1
又∵當(dāng)x>1時(shí),f′(x)>0,當(dāng)-

<x<1時(shí),f′(x)<0,當(dāng)x<-

時(shí),f′(x)>0,
∴函數(shù)在x=-

時(shí)有極大值為f(-

)=

函數(shù)在x=1時(shí)有極小值為f(1)=-1
(2)函數(shù)f(x)在閉區(qū)間[-2,2]上的f'(x)、f(x)的變化情況如下表:
| x | -2 | (-2,- ) | - | (- ,1) | 1 | (1,2) | 2 |
| f′(x) | | + | 0 | - | 0 | + | |
| f(x) | -10 | 增 |  | 減 | -1 | 增 | 2 |
∴當(dāng)x=2時(shí)函數(shù)有最大值為2,當(dāng)x=-2時(shí),函數(shù)有最小值為-10
點(diǎn)評(píng):本題主要考查函數(shù)的導(dǎo)數(shù)與極值,最值之間的關(guān)系,屬于導(dǎo)數(shù)的應(yīng)用.