欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知命題p:函數(shù)y=2${\;}^{{x}^{2}-2ax}$在x∈[1,+∞)上為增函數(shù);命題q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x∈R恒成立,若p∨q是真命題,求實數(shù)a的取值范圍.

分析 分別求出命題p,q為真命題的等價條件,結(jié)合復合命題的真假關(guān)系進行求解即可.

解答 解:命題p為真時,函數(shù)y=x2-2ax在x∈[1,+∞)為增函數(shù),故對稱軸x=-$\frac{-2a}{2}$=a≤1,
從而命題p為假時,a>1.…..(2分)
若命題q為真,當a-2=0,即a=2時,-4<0符合題意.…..(4分)
當a≠2時,有$\left\{\begin{array}{l}{a-2<0}\\{△=4(a-2)^{2}+4×4(a-2)<0}\end{array}\right.$…..(6分)
即-2<a<2.
故命題q為真時:-2<a≤2;q為假時:a≤-2或a>2.….(8分)
若p∨q為假命題,則命題p,q同時為假命題.
即$\left\{\begin{array}{l}{a>1}\\{a≤-2或a>2}\end{array}\right.$,所以a>2.….(10分)
∴p∨q為真命題時:a≤2.…(12分)

點評 本題主要考查復合命題的真假應用,根據(jù)函數(shù)的性質(zhì)分別求出命題p,q為真命題的等價條件是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.在某中學的“校園微電影節(jié)”活動中,學校將從微電影的“點播量”和“專家評分”兩個角度來進行評優(yōu),若A電影的“點播量”和“專家評分”中至少有一項高于B電影,則稱A電影不亞于B電影,已知共有5部微電影參展,如果某部電影不亞于其他4部,就稱此部電影為優(yōu)秀影片,那么在這5部微電影中,最多可能有5部優(yōu)秀影片.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知$\frac{cosα+sinα}{cosα-sinα}$=3,則tan(α+$\frac{π}{4}$)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.給出下列命題:
(1)函數(shù)y=tanx在定義域內(nèi)單調(diào)遞增;
(2)若α,β是銳角△ABC的內(nèi)角,則sinα>cosβ;
(3)函數(shù)y=cos($\frac{1}{2}$x+$\frac{3π}{2}$)的對稱軸x=$\frac{π}{2}$+kπ,k∈Z;
(4)函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個單位,得到y(tǒng)=sin(2x+$\frac{π}{4}$)的圖象.
其中正確的命題的序號是(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設a=20.3,b=log21.5,c=ln0.7,則(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設定義在R上的偶函數(shù)f(x),滿足對任意x∈R都有f(t)=f(2-t)且x∈(0,1]時,f(x)=$\frac{x}{{e}^{x}}$,a=f($\frac{2015}{3}$),b=f($\frac{2016}{5}$),c=f($\frac{2017}{7}$),用“<“表示a,b,c的大小關(guān)系是c<a<b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={-1,1,3,5},B={x|x>1},則A∩B=( 。
A.{-1,1}B.{1,3}C.{3,5}D.{1,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知復數(shù)z=$\frac{3-i}{1-i}$,則|z|=( 。
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知命題p:方程$\frac{x^2}{2-m}+\frac{y^2}{m-1}$=1所表示的圖形是焦點在y軸上的雙曲線,命題q:復數(shù)z=(m-3)+(m-1)i對應的點在第二象限,又p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案