欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
5.(文科)如圖,已知橢圓的中心在坐標原點,焦點F1,F2,在x軸上,長軸A1A2的長為4,x軸上一點M(${-\frac{a^2}{c},0}$),$|{\overrightarrow{M{A_1}}}|$=$2|{\overrightarrow{{A_1}{F_1}}}|$.
(1)求橢圓的方程;
(2)過左焦點F1且斜率為1的直線l與橢圓相交于C、D兩點,求△OCD的面積.

分析 (1)利用長軸A1A2的長為4,x軸上一點M(${-\frac{a^2}{c},0}$),$|{\overrightarrow{M{A_1}}}|$=$2|{\overrightarrow{{A_1}{F_1}}}|$,建立方程組,求出a,b,即可求橢圓的方程;
(2)把直線l的方程代入橢圓的方程化簡,利用根與系數的關系,求出|y1-y2|的值,即可求△OCD的面積.

解答 解:(1)設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),則|$\overrightarrow{M{A}_{1}}$|=$\frac{{a}^{2}}{c}$-a,|$\overrightarrow{{A}_{1}{F}_{1}}$|=a-c,
由題意$\left\{\begin{array}{l}{\frac{{a}^{2}}{c}-a=2(a-c)}\\{2a=4}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,∴a=2,b=$\sqrt{3}$,c=1,
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)由題意,直線l的方程為x-y+1=0,設C(x1,y1 ),D(x2,y2),
直線方程代入橢圓方程整理得7y2-6y-9=0,
∴y1+y2=$\frac{6}{7}$,y1y2=-$\frac{9}{7}$,
∴|y1-y2|=$\sqrt{(\frac{6}{7})^{2}+\frac{36}{7}}$=$\frac{12\sqrt{2}}{7}$,
∴S△OCD=$\frac{1}{2}×1×\frac{12\sqrt{2}}{7}$=$\frac{6\sqrt{2}}{7}$.

點評 本題考查橢圓的標準方程,以及橢圓的簡單性質的應用,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.確定 y=$\frac{x}{{x}^{2}+1}$的單調區(qū)間,并求函數的極大值、極小值、最大值、最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設數列{an}是集合{3s+3t|0≤s<t,且s,t∈Z}中所有的數從小到大排列成的數列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數列{an}中各項按照上小下大,左小右大的原則排成如圖等腰直角三角形數表,a200的值為( 。
A.39+319B.310+319C.319+320D.310+320

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.A,B,C,D是空間不共面的四點,且滿足$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,$\overrightarrow{AC}$•$\overrightarrow{AD}$=0,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,M為BC的中點,則△AMD是(  )
A.鈍角三角形B.銳角三角形C.直角三角形D.不確定

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.求證:
(1)$\frac{1-co{s}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$=sinα+cosα;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(1+cos2α)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.若an>0,a1=2,且an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),則$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.如圖,矩形長為6,為4,在矩形內隨機地撒300顆黃豆,數得落在橢圓外的黃豆數為100顆,以此實驗數據為依據可以估計出橢圓的面積為16.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.等軸雙曲線過點(2,1),則雙曲線的焦點坐標為( 。
A.$({±\sqrt{3},0})$B.$({0,±\sqrt{3}})$C.$({±\sqrt{6},0})$D.$({0,±\sqrt{6}})$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.經銷商小王對其所經營的某一型號二手汽車的使用年數x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應數據:
使用年數246810
售價16139.574.5
(Ⅰ)試求y關于x的回歸直線方程;
(Ⅱ)已知每輛該型號汽車的收購價格為w=0.05x2-1.75x+17.2萬元,根據(Ⅰ)中所求的回歸方程,預測x為何值時,小王銷售一輛該型號汽車所獲得的利潤z最大.
附:回歸直線的斜率和截距的最小二乘估計公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習冊答案