【題目】已知函數(shù)
,m
R.
(1)若m=﹣1,求函數(shù)
在區(qū)間[
,e]上的最小值;
(2)若m>0,求函數(shù)
的單調(diào)增區(qū)間.
【答案】(1)
;(2)見解析.
【解析】
(1)當(dāng)m=﹣1時表示原函數(shù)解析式,利用導(dǎo)函數(shù)分析單調(diào)性進(jìn)而求得指定區(qū)間的最小值;
(2)對原函數(shù)求導(dǎo),利用分類討論m=1時,m>1時和0<m<1時,導(dǎo)函數(shù)的大于零的解集,即為原函數(shù)的單調(diào)遞增區(qū)間.
解:(1)m=﹣1時,
,
,x
[
,e],
令
得
(舍去)或者
,列表如下:
x |
|
| 1 |
| e |
| - | 0 | + | ||
|
|
| 極小值 |
|
|
所以,當(dāng)x=1時,函數(shù)
的最小值為
,
(2)![]()
①當(dāng)m=1時,對任意x>0,都有
恒成立(當(dāng)且僅當(dāng)x=1時,
)
則函數(shù)
在區(qū)間(0,
)上單調(diào)遞增;
②當(dāng)m>1時,令
,得x<1或x>m;
則函數(shù)
在區(qū)間(0,1),(m,
)上單調(diào)遞增;
③當(dāng)0<m<1時,令
,得x<m或x>1;
則函數(shù)
在區(qū)間(0,m),(1,
)上單調(diào)遞增;
綜上可得,
當(dāng)m=1時,函數(shù)
的單調(diào)增區(qū)間為(0,
);
當(dāng)m>1時,函數(shù)
的單調(diào)增區(qū)間為(0,1),(m,
);
當(dāng)0<m<1時,函數(shù)
的單調(diào)增區(qū)間為(0,m),(1,
).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的最大值;
(2)令
,討論函數(shù)
的單調(diào)區(qū)間;
(3)若
,正實數(shù)
滿足
,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
和
,假設(shè)兩人射擊是否擊中目標(biāo)相互沒有影響,每人每次射擊是否擊中目標(biāo)相互也沒有影響.
(1)求甲、乙兩人各射擊一次均擊中目標(biāo)的概率;
(2)若乙在射擊中出現(xiàn)連續(xù)
次未擊中目標(biāo)則會被終止射擊,求乙恰好射擊
次后被終止射擊的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育與環(huán)保部門聯(lián)合組織該市中學(xué)參加市中學(xué)生環(huán)保知識團(tuán)體競賽,根據(jù)比賽規(guī)則,某中學(xué)選拔出8名同學(xué)組成參賽隊,其中初中學(xué)部選出的3名同學(xué)有2名女生;高中學(xué)部選出的5名同學(xué)有3名女生,競賽組委會將從這8名同學(xué)中隨機(jī)選出4人參加比賽.
(Ⅰ)設(shè)“選出的4人中恰有2名女生,而且這2名女生來自同一個學(xué)部”為事件
,求事件
的概率
;
(Ⅱ)設(shè)
為選出的4人中女生的人數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗地隨機(jī)抽選各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
![]()
(1)求圖中a的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實驗地隨機(jī)抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求曲線
的斜率為1的切線方程;
(Ⅱ)當(dāng)
時,求證:
;
(Ⅲ)設(shè)
,記
在區(qū)間
上的最大值為M(a),當(dāng)M(a)最小時,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,PA⊥平面ABC,AC⊥BC,D為PC中點(diǎn),E為AD中點(diǎn),PA=AC=2,BC=1.
![]()
(1)求證:AD⊥平面PBC:
(2)求PE與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
(單位:萬元)對年銷售量
(單位:噸)和年利潤
(單位:萬元)的影響.對近六年的年宣傳費(fèi)
和年銷售量
(
)的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 |
|
|
|
|
|
|
年宣傳費(fèi) |
|
|
|
|
|
|
年銷售量 |
|
|
|
|
|
|
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)
(萬元)與年銷售量
(噸)之間近似滿足關(guān)系式
(
).對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
|
|
|
|
|
|
|
|
(1)根據(jù)所給數(shù)據(jù),求
關(guān)于
的回歸方程;
(2)已知這種產(chǎn)品的年利潤
與
,
的關(guān)系為
若想在
年達(dá)到年利潤最大,請預(yù)測
年的宣傳費(fèi)用是多少萬元?
附:對于一組數(shù)據(jù)
,
,…,
,其回歸直線
中的斜率和截距的最小二乘估計分別為
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為矩形且
,側(cè)面
底面
,且側(cè)面
是正三角形,
是
中點(diǎn).
![]()
(1)證明:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com