| A. | $\frac{9}{5}$ | B. | $\frac{11}{6}$ | C. | $\frac{13}{7}$ | D. | 2 |
分析 由a1+2a2+3a3+…+nan=n2(n∈N*),得a1+2a2+3a3+…+(n-1)an-1=(n-1)2(n≥2),兩式相減,得$n{a}_{n}={n}^{2}-(n-1)^{2}$=2n-1,由此求出${a}_{n}=\frac{2n-1}{n}$,進而能求出a7.
解答 解:∵a1+2a2+3a3+…+nan=n2(n∈N*),①
∴a1+2a2+3a3+…+(n-1)an-1=(n-1)2(n≥2),②
①-②,得:$n{a}_{n}={n}^{2}-(n-1)^{2}$=2n-1,
∴${a}_{n}=\frac{2n-1}{n}$,對n=1也成立,
∴${a}_{7}=\frac{2×7-1}{7}=\frac{13}{7}$.
故選:C.
點評 本題考查數列的第7項的求法,考查作差法等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $({-\frac{1}{3}ln6,ln2}]$ | B. | $({-ln2,-\frac{1}{3}ln6})$ | C. | $({-ln2,-\frac{1}{3}ln6}]$ | D. | $({-\frac{1}{3}ln6,ln2})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\sqrt{17}$ | B. | 4 | C. | $\sqrt{15}$ | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 9 | B. | 5 | C. | $\sqrt{5}$ | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
| 學生 | A | B | C | D | E |
| 數學成績x(分) | 89 | 91 | 93 | 95 | 97 |
| 物理成績y(分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com