| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期期中文科數(shù)學(xué)A試卷(解析版) 題型:解答題
選修4—4;坐標(biāo)系與參數(shù)方程.
已知直線
:
為參數(shù)), 曲線![]()
(
為參數(shù)).
(Ⅰ)設(shè)
與
相交于
兩點(diǎn),求
;
(Ⅱ)若把曲線
上各點(diǎn)的橫坐標(biāo)壓縮為原來的
倍,縱坐標(biāo)壓縮為原來的
倍,得到曲線
,設(shè)點(diǎn)
是曲線
上的一個動點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省洛陽市高三下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分10分)選修4—4;坐標(biāo)系與參數(shù)方程.
已知直線![]()
為參數(shù)), 曲線![]()
(
為參數(shù)).
(Ⅰ)設(shè)
與
相交于
兩點(diǎn),求
;
(Ⅱ)若把曲線
上各點(diǎn)的橫坐標(biāo)壓縮為原來的
倍,縱坐標(biāo)壓縮為原來的
倍,得到曲線
,設(shè)點(diǎn)
是曲線
上的一個動點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年寧夏高三第六次月考理科數(shù)學(xué)試卷 題型:解答題
選修4—4;坐標(biāo)系與參數(shù)方程.
已知直線![]()
為參數(shù)), 曲線![]()
(
為參數(shù)).
(Ⅰ)設(shè)
與
相交于
兩點(diǎn),求
;
(Ⅱ)若把曲線
上各點(diǎn)的橫坐標(biāo)壓縮為原來的
倍,縱坐標(biāo)壓縮為原來的
倍,得到曲線
,設(shè)點(diǎn)
是曲線
上的一個動點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年寧夏高三第六次月考文科數(shù)學(xué)試卷 題型:解答題
)選修4—4;坐標(biāo)系與參數(shù)方程.
已知直線![]()
為參數(shù)), 曲線![]()
(
為參數(shù)).
(Ⅰ)設(shè)
與
相交于
兩點(diǎn),求
;
(Ⅱ)若把曲線
上各點(diǎn)的橫坐標(biāo)壓縮為原來的
倍,縱坐標(biāo)壓縮為原來的
倍,得到曲線
,設(shè)點(diǎn)
是曲線
上的一個動點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年東北師大附中高二下學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題8分)
已知直線
(
為參數(shù)),圓
(
為參數(shù)).
(Ⅰ)當(dāng)
時,試判斷直線
與圓
的位置關(guān)系;
(Ⅱ)若直線
與圓
截得的弦長為1,求直線
的普通方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com