分析 通過等比數(shù)列{an}的概念可知q4=$\frac{{a}_{6}}{{a}_{2}}$,進(jìn)而可知an=a2•qn-2=3n-1,利用對(duì)數(shù)的性質(zhì)可知log3an=n-1,通過等差數(shù)列的求和公式計(jì)算即得結(jié)論.
解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵a2=3,a6=243,
∴q4=$\frac{{a}_{6}}{{a}_{2}}$=$\frac{243}{3}$=81,
又∵an>0,
∴q=3,
∴an=a2•qn-2=3•3n-2=3n-1,
∴l(xiāng)og3an=log33n-1=n-1,
∴數(shù)列{log3an}的前n項(xiàng)的和為:$\frac{n(n-1)}{2}$=$\frac{{n}^{2}-n}{2}$,
故答案為:${3^{n-1}},\frac{{{n^2}-n}}{2}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,涉及對(duì)數(shù)的性質(zhì)等基礎(chǔ)知識(shí),注意解題方法的積累,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{7}$ | B. | $\frac{7}{16}$ | C. | $\frac{7}{8}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 36$\sqrt{3}$+36 | B. | 6$\sqrt{3}$+6 | C. | 3$\sqrt{6}-3\sqrt{2}$ | D. | 18$\sqrt{6}-18\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com