欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知f(x)=lnx,g(x)=數(shù)學公式ax2+bx,
(1)當a=b=數(shù)學公式時,求函數(shù)h(x)=f(x)-g(x)的單調區(qū)間;
(2)若b=2且h(x)=f(x)-g(x)存在單調遞減區(qū)間,求a的取值范圍.

解:(1)當 時,
,
∵h(x)的定義域為(0,+∞),令h'(x)=0,得x=1
∴當0<x<1時,h'(x)>0,h(x)在(0,1)上是單調遞增;
當x>1時,h'(x)<0,h(x)在(1,+∞)上是單調遞減;
所以,函數(shù)h(x)=f(x)-g(x)的單調遞增區(qū)間為(0,1);單調遞減區(qū)間為(1,+∞).
(2)b=2時,

因為函數(shù)h(x)存在單調遞減區(qū)間,
所以h′(x)<0有解.
即當x>0時,則ax2+2x-1>0在(0,+∞)上有解.
①當a=0時,y=2x-1為單調遞增的一次函數(shù),y=2x-1>0在(0,+∞)總有解.
②當a>0時,y=ax2+2x-1為開口向上的拋物線,y=ax2+2x-1>0在(0,+∞)總有解.
③當a<0時,y=ax2+2x-1為開口向下的拋物線,而y=ax2+2x-1>0在(0,+∞)總有解,
則△=4+4a>0,且方程y=ax2+2x-1=0至少有一個正根,
此時,-1<a<0
綜上所述,a的取值范圍為(-1,+∞)
分析:(1)將a、b的值代入,可得 ,求出其導數(shù),再在區(qū)間(0,∞)上討論導數(shù)的正負,可以得出函數(shù)h(x)單調區(qū)間;
(2)先求函數(shù)h(x)的解析式,因為函數(shù)h(x)存在單調遞減區(qū)間,所以不等式h'(x)<0有解,通過討論a的正負,得出h′(x)<0有解,即可得出a的取值范圍.
點評:本題考查了利用導數(shù)研究函數(shù)的單調性、導數(shù)的幾何意義,函數(shù)與方程的討論等,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在(0,+∞)上的三個函數(shù)f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1處取得極值.
(1)求a的值及h(x)的單調區(qū)間;
(2)求證:當1<x<e2時,恒有x<
2+f(x)
2-f(x)
;
(3)把h(x)對應的曲線C1向上平移6個單位后得到曲線C2,求C2與g(x)對應曲線C3的交點的個數(shù),并說明道理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lnx,g(x)=x+
a
x
(a∈R).
(1)求f(x)-g(x)的單調區(qū)間;
(2)若x≥1時,f(x)≤g(x)恒成立,求實數(shù)a的取值范圍;
(3)當n∈N*,n≥2時,證明:
ln2
3
ln3
4
•…•
lnn
n+1
1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lnx-
a
x

(Ⅰ)當a>0時,判斷f(x)在定義域上的單調性;
(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,試求a的取值范圍;
(Ⅲ)若f(x)在[1,e]上的最小值為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函數(shù)h(x)=f(x)-g(x)的單調增區(qū)間;
(2)當x∈[-2,0]時,g(x)≤2c2-c-x3恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lnx+cosx,則f(x)在x=
π2
處的導數(shù)值為
 

查看答案和解析>>

同步練習冊答案