【題目】已知橢圓
,離心率
,點(diǎn)
在橢圓上.
![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P是橢圓C上一點(diǎn),左頂點(diǎn)為A,上頂點(diǎn)為B,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:
為定值.
【答案】(1)
;(2)見解析.
【解析】試題分析:(1)根據(jù)橢圓
的離心率
,點(diǎn)
在橢圓上,結(jié)合性質(zhì)
,列出關(guān)于
、
、
的方程組,求出
、
、
,即可得橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)
,根據(jù)三點(diǎn)共線斜率相等,可分別求出
的坐標(biāo),利用兩點(diǎn)間的距離公式可將
用
表示,結(jié)合點(diǎn)
在橢圓
上消去
即可得結(jié)果.
試題解析:(1)依題意得
,設(shè)
,則
,
由點(diǎn)
在橢圓上,有
,解得
,則
,
橢圓C的方程為:
設(shè)
,
,
,則
,由APM三點(diǎn)共線,則有
,即
,解得
,則
,
由BPN三點(diǎn)共線,有
,即
,解得
,
則![]()
![]()
=
又點(diǎn)P在橢圓上,滿足
,有
,
代入上式得![]()
=
,
可知
為定值
。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生課外閱讀時(shí)間,從中隨機(jī)抽取了50名學(xué)生,收集了他們2018年10月課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為5組:[10,12),[12,14),[14,16),[16,18),[18,20],得到如圖所示的頻率分布直方圖.
![]()
(Ⅰ)試估計(jì)該校所有學(xué)生中,2018年10月課外閱讀時(shí)間不小于16小時(shí)的學(xué)生人數(shù);
(Ⅱ)已知這50名學(xué)生中恰有2名女生的課外閱讀時(shí)間在[18,20],現(xiàn)從課外閱讀時(shí)間在[18,20]的樣本對應(yīng)的學(xué)生中隨機(jī)抽取2人,求至少抽到1名女生的概率;
(Ⅲ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試估計(jì)該校學(xué)生2018年10月課外閱讀時(shí)間的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知
=(cosx+sinx,sinx),
=(cosx-sinx,2cosx),
(Ⅰ)求證:向量
與向量
不可能平行;(Ⅱ)若f(x)=
·,且x∈
時(shí),求函數(shù)f(x)的最大值及最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其命名的函數(shù)
被稱為狄利克雷函數(shù),其中R為實(shí)數(shù)集,Q為有理數(shù)集,以下命題正確的個(gè)數(shù)是( )
下面給出關(guān)于狄利克雷函數(shù)f(x)的五個(gè)結(jié)論:
①對于任意的x∈R,都有f(f(x))=1;
②函數(shù)f(x)偶函數(shù);
③函數(shù)f(x)的值域是{0,1};
④若T≠0且T為有理數(shù),則f(x+T)=f(x)對任意的x∈R恒成立;
⑤在f(x)圖象上存在不同的三個(gè)點(diǎn)A,B,C,使得△ABC為等邊角形.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了
月
日至
月
日每天的晝夜溫差與實(shí)驗(yàn)室每天
顆種子的發(fā)芽數(shù),得到以下表格
![]()
該興趣小組確定的研究方案是:先從這
組數(shù)據(jù)中選取
組數(shù)據(jù),然后用剩下的
組數(shù)據(jù)求線性回歸方程,再用被選取的
組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1) 求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是
月
日與
月
日的兩組數(shù)據(jù),請根據(jù)
月
日至
月
日的數(shù)據(jù),求出發(fā)芽數(shù)
關(guān)于溫差
的線性回歸方程
,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過
,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程
中斜率和截距最小二乘估法計(jì)算公式:
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于
,②
,③
,④
,⑤
與⑥
,選擇恰當(dāng)?shù)年P(guān)系式序號填空:
(1)角
為第一象限角的充要條件是_____;
(2)角
為第二象限角的充要條件是_____;
(3)角
為第三象限角的充要條件是_____;
(4)角
為第四象限角的充要條件是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ) 當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),若函數(shù)
的導(dǎo)函數(shù)
的圖象與
軸交于
,
兩點(diǎn),其橫坐標(biāo)分別為
,
,線段
的中點(diǎn)的橫坐標(biāo)為
,且
,
恰為函數(shù)
的零點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和.已知
.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令
,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com