分析 連接AC1,根據(jù)AA1=AC可得到A1C⊥AC1,而根據(jù)線面垂直的判定定理AB⊥平面ACC1A1,從而得到A1C⊥AB,所以根據(jù)線面垂直的判定定理可得到A1C⊥平面ABC1,所以A1C⊥BC1.
解答 證明:如圖,連接AC1;
AA1=AC;
∴四邊形ACC1A1是菱形;
∴A1C⊥AC1;
AA1⊥底面ABC,AB?底面ABC;
∴AA1⊥AB,即AB⊥AA1;
又AB⊥AC;C1A1
∴AB⊥平面ACC1A1,A1C?平面ACC1A1
∴AB⊥A1C,即A1C⊥AB,AB∩AC1=A;
∴A1C⊥平面ABC1,BC1?平面ABC1;
∴A1C⊥BC1.
點(diǎn)評(píng) 考查要證明線線垂直可轉(zhuǎn)化為證明線面垂直,以及菱形的定義,菱形對(duì)角線的特點(diǎn),直棱柱的側(cè)棱和底面的關(guān)系,線面垂直的判定定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 圓 | B. | 橢圓 | C. | 拋物線 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com