比較下列各組中四個值的大小:
(1)sin1,sin2,sin3,sin4;
(2)cos1,cos2,cos3,cos4.
|
答案:(1)sin2>sin1>sin3>sin4; (2)cos3<cos4<cos2<cos1. 思路分析:轉(zhuǎn)化到同一單調(diào)區(qū)間再比較. 解析:(1)∵0<1< ∴sin4<0,sin2=sin(π-2),sin3=sin(π-3). 而0<π-3<1<π-2< ∴sin(π-3)<sin1<sin(π-2), 即sin2>sin1>sin3>sin4. (2)由(1)可知,cos1>0,cos2=-cos(π-2),cos3=-cos(π-3), cos4=-cos(4-π).而0<π-3<4-π<π-2< ∴cos(π-3)>cos(4-π)>cos(π-2), ∴cos(π-3)<-cos(4-π)<-cos(π-2), 即cos3<cos4<cos2<cos1. |
|
①要判斷函數(shù)值的大小,主要依據(jù)是函數(shù)在這個區(qū)間上的單調(diào)性.②求三角函數(shù)的單調(diào)區(qū)間,可利用換元思想把角的某個代數(shù)式看作新的變量.③對于復(fù)合函數(shù),應(yīng)先考慮函數(shù)的定義域,再結(jié)合函數(shù)的單調(diào)性來確定單調(diào)區(qū)間. |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com