【題目】約束條件
圍成的區(qū)域面積為
,且z=2x+y的最大值和最小值分別為m和n,則m﹣n=( 。
A. 5 B. 6 C. 7 D. 8
【答案】B
【解析】
作出可行域,變形目標(biāo)函數(shù)平移直線y=-2x可得m和n值,相減可得答案.
作出約束條件所對應(yīng)的可行域(如圖△ABC及內(nèi)部),
![]()
C(
,
),A(k,k),B(1-k,k)區(qū)域面積為
可得
(1-2k)(
k)=
, 解得k=-1(k=2舍去);
變形目標(biāo)函數(shù)可得y=-2x+z,平移直線y=-2x可知:當(dāng)直線經(jīng)過點(diǎn)A(-1,-1)時,直線的截距最小,代值計算可得z取最小值n=-3,當(dāng)直線經(jīng)過點(diǎn)B(2,-1)時,直線的截距最大,代值計算可得z取最大值m=3,故m-n=3+3=6,
故選:B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域?yàn)?/span>
,若存在區(qū)間
使得
:
(Ⅰ)
在
上是單調(diào)函數(shù);
(Ⅱ)
在
上的值域是
,
則稱區(qū)間
為函數(shù)
的“倍值區(qū)間”.
下列函數(shù)中存在“倍值區(qū)間”的有______________(填上所有你認(rèn)為正確的序號)
①
; ②
;
③
; ④
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
的焦點(diǎn)為
,過點(diǎn)
的直線交拋物線于
,
兩點(diǎn).
(1)
為坐標(biāo)原點(diǎn),求證:
;
(2)設(shè)點(diǎn)
在線段
上運(yùn)動,原點(diǎn)
關(guān)于點(diǎn)
的對稱點(diǎn)為
,求四邊形
面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是( )
A.兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對值越接近于1
B.設(shè)
,且
,則![]()
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬帶越狹窄,其模型擬合的精度越高
D.已知變量x和y滿足關(guān)系
,變量y與z正相關(guān),則x與z負(fù)相關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)數(shù)
滿足f(x)+x
>
對x∈R恒成立,且實(shí)數(shù)x,y滿足xf(x)﹣yf(y)>f(y)﹣f(x),則下列關(guān)系式恒成立的是( )
A.
B.ln(x2+1)>ln(y2+1)
C.
D.x﹣y>sinx﹣siny
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集
具有性質(zhì)
;對任意的
、
,
,與
兩數(shù)中至少有一個屬于
.
(1)分別判斷數(shù)集
與
是否具有性質(zhì)
,并說明理由;
(2)證明:
,且
;
(3)當(dāng)
時,若
,求集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求
在
上的最值;
(2)若
,當(dāng)
有兩個極值點(diǎn)
時,總有
,求此時實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體
中,E、F、G、H分別是
的中點(diǎn).
![]()
(1)證明:
平面![]()
(2)證明:平面
平面
.
(3)求直線AE與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
(a>b>0)的離心率為
,短軸長是2.
![]()
(1)求橢圓C的方程;
(2)設(shè)橢圓C的下頂點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng)
,求k的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com