欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖,在三棱錐P-ABC中,PB⊥面ABC,△ABC是直角三角形,∠ABC=90°,AB=BC=2,∠PAB=45°,點(diǎn)D、E、F分別為AC、AB、BC的中點(diǎn).
(1)求證:EF⊥PD;
(2)求直線PF與平面PBD所成的角的正弦值.

分析 (1)連結(jié)BD,摔倒導(dǎo)出BD⊥AC,AC⊥PB,從而AC⊥PD,再由EF∥AC,能證明EF⊥PD.
(2)由PB⊥面ABC,得PB⊥EF,連結(jié)BD,交EF于點(diǎn)O,則∠FPO為直線PF與平面PBD所成的角,且EF⊥PO,由此能求出直線PF與平面PBD所成的角的正弦值.

解答 證明:(1)連結(jié)BD,在△ABC中,∠ABC=90°,
∵AB=BC,點(diǎn)D為AC的中點(diǎn),∴BD⊥AC,
又PB⊥面ABC,∴AC⊥PB,
又PB與BD交于點(diǎn)B,∴AC⊥平面PBD,AC⊥PD,
∵E,F(xiàn)分別為AB、BC的中點(diǎn),
∴EF∥AC,∴EF⊥PD.
解:(2)PB⊥面ABC,∴PB⊥EF,
連結(jié)BD,交EF于點(diǎn)O,
∵EF⊥PB,EF⊥PD,∴EF⊥平面PBD,
∴∠FPO為直線PF與平面PBD所成的角,且EF⊥PO,
∵PB⊥面ABC,∴PB⊥AB,PB⊥BC,
又∵∠PAB=45°,∴PB=AB=2,
∵OF=$\frac{1}{4}$AC=$\frac{\sqrt{2}}{2}$,
∴PF=$\sqrt{P{B}^{2}+B{F}^{2}}$=$\sqrt{5}$,
在Rt△FPO中,sin$∠FPO=\frac{OF}{PF}$=$\frac{\sqrt{10}}{10}$,
∴直線PF與平面PBD所成的角的正弦值為$\frac{\sqrt{10}}{10}$.

點(diǎn)評(píng) 本題考查線線垂直的證明,考查線面角的正弦值的求法,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查等價(jià)轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}3x+y+3≥0\\ 2x-y+2≤0\\ x+2y-4≤0\end{array}\right.$,則z=x2+y2的取值范圍為( 。
A.[1,13]B.[1,4]C.$[{\frac{4}{5},13}]$D.$[{\frac{4}{5},4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c為常數(shù)).若不等式f(x)≥2ax+b的解集為R,則$\frac{b^2}{{{a^2}+{c^2}}}$的最大值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若集合A={x|x2<4},B={y|y=x2-2x-1,x∈A},則集合A∪B={x|-2≤x<7}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3. 如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PA=PB,PA⊥PB,F(xiàn)為CE上的點(diǎn),且BF⊥平面PAC.
(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值;
(Ⅲ)在棱PD上是否存在一點(diǎn)G,使GF∥平面PAB,若存在,求PG的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知,平行四邊形ABCD中,∠DAB=60°,AB=2AD=4EF=4ED=4,EF∥AD,AF=$\sqrt{2}$,M、N分別為線段AB、DE的中點(diǎn)
(Ⅰ)求證:MN∥平面BCEF;
(Ⅱ)求證:平面ADEF⊥平面DEB;
(Ⅲ)若MN=4,求直線MN與平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在三角形ABC中,AD⊥BC,AD=1,BC=4,點(diǎn)E為AC的中點(diǎn),$\overrightarrow{DC}•\overrightarrow{BE}$=$\frac{15}{2}$,則AB的長(zhǎng)度為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等差數(shù)列{an}的公差d≠0,Sn為其前n項(xiàng)和,若a2,a3,a6成等比數(shù)列,且a10=-17,則$\frac{{S}_{n}}{{2}^{n}}$的最小值是( 。
A.$-\frac{1}{2}$B.$-\frac{5}{8}$C.$-\frac{3}{8}$D.$-\frac{15}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)不等式組$\left\{\begin{array}{l}x>0\\ y>0\\ y≤-nx+2n\end{array}\right.$所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)個(gè)數(shù)為an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=${2^{a_n}}$+(-1)nan,求數(shù)列{bn}的前2n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案