欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.調查某市出租車使用年限x和該年支出維修費用y(萬元),得到數(shù)據(jù)如表:
x23456
y2.23.85.56.57
(1)畫出y關于x的散點圖;
(2)用最小二乘法求出回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)由(2)中結論預測第10年所支出的維修費用.
參考數(shù)據(jù):$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 (1)利用描點法可得圖象;
(2)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),求出b,a,即可求線性回歸方程;
(3)當自變量為10時,代入線性回歸方程,求出維修費用,這是一個預報值.

解答 解:(1)散點圖如圖:

(2)$\overline{x}=4$.$\overline{y}=5$,代入公式得$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=1.23$,
所以$\hat a=\bar y-\hat b\overline{x}=0.08$
所以回歸直線方程為$\hat y=1.23x+0.08$
(3)∵x=10,$\hat y=12.38$,
∴預計第10年需要支出維修費用12.38 萬元.

點評 本題考查線性回歸方程的求解和應用,是一個基礎題,解題的關鍵是正確應用最小二乘法來求線性回歸方程的系數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如圖所示.
(1)求頻率分布直方圖中a的值;
(2)分別求出這組數(shù)據(jù)的中位數(shù)與成績在[50,60)中的學生人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在梯形ABCD中,AB∥DC,AD⊥AB,AD=DC=1,AB=2,點P,Q分別在線段BC,CD上運動,且$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$.
(1)當λ=$\frac{1}{2}$時,求|$\overrightarrow{AP}$|;
(2)求$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.某單位有7個連在一起的車位,現(xiàn)有3輛不同型號的車需停放,如果要求剩余的4個車位中恰有3個連在一起,則不同的停放方法有72種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=mlnx(m∈R),g(x)=$\frac{x-1}{2x}$.
(1)當m=1時,求y=f(x)在x=1處的切線方程;
(2)設F(x)=f(x)-2g(x),若函數(shù)F(x)在區(qū)間[1,e]上的最小值為-1,求實數(shù)m的值;
(3)當m=$\frac{3}{16}$時,若不等式f(x)+t≤kx+b≤g(x)對?x∈[2,4]恒成立,試給出實數(shù)t的一個值,使?jié)M足條件的實數(shù)k,b唯一,并直接寫出k,b的值(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在($\sqrt{x}$+$\frac{1}{{2\root{4}{x}}}$)n的展開式中,已知含x的一次項為第五項.
(1)求n的值;
(2)求展開式中的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域為[-2,2],且滿足:f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)判斷f(x)的奇偶性;
(3)若f(x)為單調函數(shù),且f(1)>0,f(-1)=-1,解不等式:f(2x)+f(x2-2)>-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=sinx-acosx圖象的一條對稱軸為x=$\frac{3}{4}$π,記函數(shù)f(x)的兩個極值點分別為x1,x2,則|x1+x2|的最小值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.關于x的不等式xlnx-kx>3對任意x>1恒成立,則整數(shù)k的最大為( 。
A.-1B.-2C.-3D.-4

查看答案和解析>>

同步練習冊答案