欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.下列命題中正確的是( 。
A.cosα≠0是α≠2kπ+$\frac{π}{2}$(k∈Z)的充分必要條件
B.函數(shù)f(x)=3ln|x|的零點(diǎn)是(1,0)和(-1,0)
C.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p
D.若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差會(huì)改變

分析 A.根據(jù)充分條件和必要條件的定義進(jìn)行判斷.
B.根據(jù)函數(shù)零點(diǎn)的定義進(jìn)行判斷.
C.根據(jù)正態(tài)分布的大小進(jìn)行求解.
D.根據(jù)方差的性質(zhì) 進(jìn)行判斷.

解答 解:A.由cosα≠0得α≠kπ+$\frac{π}{2}$,則cosα≠0是α≠2kπ+$\frac{π}{2}$(k∈Z)的充分不必要條件,故A錯(cuò)誤,
B.由f(x)=0得ln|x|=0,z則|x|=1,即x=1或x=-1,即函數(shù)f(x)=3ln|x|的零點(diǎn)是1和-1,故B錯(cuò)誤,
C.隨機(jī)變量ξ服從正態(tài)分布N(0,1),則圖象關(guān)于y軸對(duì)稱(chēng),
若P(ξ>1)=p,則P(0<ξ<1)=$\frac{1}{2}$-p,即P(-1<ξ<0)=$\frac{1}{2}$-p,故C正確,
D.若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不會(huì)改變,故D錯(cuò)誤,
故選:C

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及的知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知非零向量$\overrightarrow a=({{m^2}-1,m+1})$與向量$\overrightarrow b=({1,-2})$垂直,則實(shí)數(shù)m的值為( 。
A.-1B.3C.-1或3D.1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,A=$\frac{π}{4}$,a=2,bcosC-ccosB=2$\sqrt{2}$,則∠B=$\frac{5π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且$asinB-\sqrt{3}bcosA=0$.
(1)若cosC=$\frac{4}{5}$,求cos(A+C);
(2)若b+c=5,A=$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-4}&{x>0}\\{2x}&{x≤0}\end{array}}\right.$,則f[f(1)]的值為( 。
A.-6B.0C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知直線(xiàn)y=$\sqrt{11}$x與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A(yíng)、B兩點(diǎn),若橢圓上存在點(diǎn)P,使得△ABP是等邊三角形,則橢圓C的離心率e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}(x>0)}\\{f(-x)+1(x<0)}\end{array}\right.$,則f(-2)=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,M為短軸端點(diǎn),且S${\;}_{M{F}_{1}{F}_{2}}$=4,離心率為$\frac{\sqrt{2}}{2}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條射線(xiàn),與橢圓C分別交于A(yíng),B兩點(diǎn),且滿(mǎn)足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.證明:點(diǎn)O到直線(xiàn)AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)以雙曲線(xiàn)x2-$\frac{{y}^{2}}{3}$=1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),過(guò)點(diǎn)H(3,0)的直線(xiàn)與橢圓交于兩點(diǎn)P(x1,y1)、Q(x2,y2),過(guò)Q作直線(xiàn)垂直于x軸,交橢圓于另一點(diǎn)R.
(1)求橢圓的方程;
(2)求證:PR與x軸交于定點(diǎn)D,并求D點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案