【題目】給定函數(shù)
、
,定義
.
(1)證明:
;
(2)若
,
,證明:
是周期函數(shù);
(3)若
,
,
,
,
,證明:
是周期函數(shù)的充要條件是
為有理數(shù).
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.
【解析】
(1)運用新定義,去絕對值,即可得證;
(2)由正弦函數(shù)和余弦函數(shù)的周期,即可得證;
(3)運用周期函數(shù)的定義,結合和差化積公式,即可得證.
證明:(1)由F(f(x),g(x))
,
f(x)≥g(x)時,
f(x),
f(x)<g(x)時,
g(x),
則F(f(x),g(x))
;
(2)f(x)=sin2x﹣cosx,g(x)=sin2x+cosx,
F(f(x),g(x))
sin2x+|cosx|,
由F(f(x+π),g(x+π))=sin(2x+2π)+|cos(x+π)|=sin2x+|cosx|
=F(f(x),g(x)),即F(f(x),g(x))是最小正周期為π的周期函數(shù);
(3)f(x)+g(x)是周期函數(shù)x∈R,T≠0,f(x+T)+g(x+T)=f(x)+g(x)恒成立
A1sinω1(x+T)+A2sinω2(x+T)=A1sinω1x+A2sinω2x,
由A1[sinω1(x+T)﹣sinω1x]+A2[sinω2(x+T)﹣sinω2x]=0,
可得sinω1(x+T)﹣sinω1x=0,sinω2(x+T)﹣sinω2x=0,
即2cos(ω1x
ω1T)sin
ω1T=0,2cos(ω2x
ω2T)sin
ω2T=0,
由x∈R,可得sin
ω1T=,sin
ω2T=0,
即有
ω1T=kπ,k∈Z;
ω2T=mπ,m∈Z,k,m≠0,
即有
為有理數(shù),
可得f(x)+g(x)是周期函數(shù)的充要條件是
為有理數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)![]()
(1)求函數(shù)
的單調區(qū)間;
(2)若函數(shù)
有兩個零點
,
,求滿足條件的最小正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)有一塊三角形空地,如圖△ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計劃在這片空地上進行綠化和修建運動場所,在△ABC內的P點處有一服務站(其大小可忽略不計),開發(fā)商打算在AC邊上選一點D,然后過點P和點D畫一分界線與邊AB相交于點E,在△ADE區(qū)域內綠化,在四邊形BCDE區(qū)域內修建運動場所. 現(xiàn)已知點P處的服務站與AC距離為10米,與BC距離為100米. 設
米,試問
取何值時,運動場所面積最大?
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于充分必要條件的判斷中,錯誤的是( )
A.“
”是“
”的充分條件
B.“
”是“
”的必要條件
C.“
”是“
”的充要條件
D.“
,
”是“
”的非充分非必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為
(α為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點P的極坐標為
,直線l的極坐標方程為
.
(1)求直線l的直角坐標方程與曲線C的普通方程;
(2)若Q是曲線C上的動點,M為線段PQ的中點,直線l上有兩點A,B,始終滿足|AB|=4,求△MAB面積的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
的最大值為
,最小值為
,則( )
A.存在實數(shù)
,使![]()
B.存在實數(shù)
,使![]()
C.對任意實數(shù)
,有![]()
D.對任意實數(shù)
,有![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線
的焦點為
,經過
軸正半軸上點
的直線
交
于不同的兩點
和
.
![]()
(1)若
,求點
的坐標;
(2)若
,求證:原點
總在以線段
為直徑的圓的內部;
(3)若
,且直線
∥
,
與
有且只有一個公共點
,問:△
的面積是否存在最小值?若存在,求出最小值,并求出
點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國的第一艘航空母艦“遼寧艦”在某次艦載機起降飛行訓練中,有5架“殲-15”艦載機準備著艦,已知乙機不能最先著艦,丙機必須在甲機之前著艦(不一定相鄰),那么不同的著艦方法種數(shù)為______.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com