提高南洋大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度
(單位:千米/小時)是車流密度
(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)
時,車流速度
是車流密度
的一次函數(shù).
(Ⅰ)當(dāng)
時,求函數(shù)
的表達(dá)式; (Ⅱ)當(dāng)車流密度
為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時)
可以達(dá)到最大,并求出最大值.(精確到1輛/小時)
(Ⅰ)
=![]()
(Ⅱ)當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大,最大值約為3333輛/小時
【解析】本題主要考查函數(shù)、最值等基礎(chǔ)知識,同時考查運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力,屬于中等題.
(I)根據(jù)題意,函數(shù)v(x)表達(dá)式為分段函數(shù)的形式,關(guān)鍵在于求函數(shù)v(x)在20≤x≤200時的表達(dá)式,根據(jù)一次函數(shù)表達(dá)式的形式,用待定系數(shù)法可求得;
(II)先在區(qū)間(0,20]上,函數(shù)f(x)為增函數(shù),得最大值為f(20)=1200,然后在區(qū)間[20,200]上用基本不等式求出函數(shù)f(x)的最大值,用基本不等式取等號的條件求出相應(yīng)的x值,兩個區(qū)間內(nèi)較大的最大值即為函數(shù)在區(qū)間(0,200]上的最大值
解:(Ⅰ)由題意:當(dāng)
時,
;當(dāng)
時,設(shè)
,顯然
在
是減函數(shù),由已知得
,解得![]()
故函數(shù)
的表達(dá)式為
=![]()
(Ⅱ)依題意并由(Ⅰ)可得![]()
![]()
當(dāng)
時,
為增函數(shù),故當(dāng)
時,其最大值為
;
當(dāng)
時,
,
當(dāng)且僅當(dāng)
,即
時,等號成立.
所以,當(dāng)
時,
在區(qū)間
上取得最大值
.
綜上,當(dāng)
時,
在區(qū)間
上取得最大值
,
即當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大,最大值約為3333輛/小時.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| k |
| 250-x |
| 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濰坊市四縣一校高三教學(xué)質(zhì)量監(jiān)測理科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度
(單位:千米/小時)是車流密度
(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)
時,車流速度
是車流密度
的一次函數(shù).
(Ⅰ)當(dāng)
時,求函數(shù)
的表達(dá)式
(Ⅱ)當(dāng)車流密度
為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時)
可以達(dá)到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com