分析 P到BC的距離為四面體上以AO為直徑的球面上的點到BC的距離,最大距離為BC到球心的距離(即AO與BC的公垂線)+半徑.
解答
解:由題意,直線AO與動點P的空間關(guān)系:
點P是以AO為直徑的球面上的點,
∴P到BC的距離為四面體上以AO為直徑的球面上的點到BC的距離,
最大距離為BC到球心的距離(即AO與BC的公垂線)+半徑,
∵正四面體OABC的棱長為2,∴AO與BC的公垂線長為:$\sqrt{(4-1)-1}$=$\sqrt{2}$,
以AO為直徑的球的半徑r=1,
點P到直線BC的距離的最大值為$\sqrt{2}+1$.
故答案為:$\sqrt{2}+1$.
點評 本題考查點到直線的最大值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x={t}^{2}+1}\\{y=0}\end{array}\right.$(t為參數(shù)) | B. | $\left\{\begin{array}{l}{x=0}\\{y=3t+1}\end{array}\right.$(t為參數(shù)) | ||
| C. | $\left\{\begin{array}{l}{x=1+sinθ}\\{y=0}\end{array}\right.$(θ為參數(shù)) | D. | $\left\{\begin{array}{l}{x=4t+1}\\{y=0}\end{array}\right.$(t為參數(shù)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com