分析 (1)引入兩個(gè)截距,用截距式寫(xiě)出方程,代入點(diǎn)(-2,2)得到一個(gè)關(guān)于兩個(gè)截距的方程,再用截距表示出與坐標(biāo)軸所圍成的三角形的面積,令其為1,得到另一個(gè)關(guān)于截距的方程,解這兩個(gè)方程組成方程組,求出截距,寫(xiě)出方程即可.
(2)聯(lián)立已知的兩直線方程得到方程組,求出兩直線的交點(diǎn)坐標(biāo),所求的直線過(guò)交點(diǎn)坐標(biāo),然后由兩直線垂直時(shí)斜率的乘積等于-1,根據(jù)直線x+3y+4=0的斜率即可得到所求直線的斜率,利用點(diǎn)斜式求直線的方程即可.
解答 解:(1)設(shè)所求直線方程為$\frac{x}{a}$+$\frac{y}$=1,由已知可得$\left\{\begin{array}{l}{\frac{-2}{a}+\frac{2}=1}\\{\frac{1}{2}|a|•|b|=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$或$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$,
屬于該直線方程為:2x+y+2=0或x+2y-2=0;
(2)聯(lián)立直線方程 $\left\{\begin{array}{l}{3x-2y+1=0①}\\{x+3y+4=0②}\end{array}\right.$,
①+②×(-3)得:y=-1,把y=-1代入②,解得x=-1,
原方程組的解為:$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,
所以兩直線的交點(diǎn)坐標(biāo)為(-1,-1),
又因?yàn)橹本x+3y+4=0的斜率為-$\frac{1}{3}$,所以所求直線的斜率為3,
則所求直線的方程為:y+1=3(x+1),即3x-y+2=0.
點(diǎn)評(píng) 考查用待定系數(shù)法求直線方程,本題先引入?yún)?shù),表示出直線的方程,再根據(jù)題設(shè)的條件建立起參數(shù)的方程求參數(shù),這是求直線方程時(shí)常用的一個(gè)思路.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{2}$ | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分非必要條件 | B. | 必要非充分條件 | ||
| C. | 充要條件 | D. | 非充分非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 34π | B. | $\frac{80π}{3}$ | C. | $\frac{91}{3}π$ | D. | 114π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com