分析 (1)證明 BC⊥AC,由平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,得BC⊥平面ACEF
(2)以C為坐標(biāo)原點建立空間直角坐標(biāo)系,求出法向量即可.
解答 解:(1)證法一:在梯形ABCD中,AB∥CD,
AD=DC=CB=2,∠ABC=60°,∴∠ADC=DCB=120°,∠DCA=∠DAC=30°,…(2分)
∴∠ACB=90°,即BC⊥AC,…(3分)
又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,
∴BC⊥平面ACEF …(5分)![]()
(2)取G為EF中點.連CG
∵四邊形ACEF是菱形,∠CAF=60°,∴CG⊥EF即CG⊥AC
與(1)同理可知CG平面ABCD
如圖所示,以C為坐標(biāo)原點建立空間直角坐標(biāo)系,…(6分)
則有$A(2\sqrt{3},0,0),B(0,2,0),D(\sqrt{3},-1,0),F(xiàn)(\sqrt{3},0,3)$,
$\overrightarrow{AB}=(-2\sqrt{3},2,0)$,$\overrightarrow{AF}=(-\sqrt{3},0,3)$,$\overrightarrow{DF}=(0,1,3)$…(7分)
設(shè)$\overrightarrow m=({x_1},{y_1},{z_1})$是平面ABF的一個法向量,
則$\left\{\begin{array}{l}\overrightarrow{AB}•\overrightarrow m=0\\ \overrightarrow{AF}•\overrightarrow m=0\end{array}\right.$,即$\left\{\begin{array}{l}-\sqrt{3}{x_1}+{y_1}=0\\-\sqrt{3}{x_1}+3{z_1}=0\end{array}\right.$,取$\overrightarrow m=(\sqrt{3},3,1)$. …(9分)
設(shè)$\overrightarrow n=({x_2},{y_2},{z_2})$是平面ADF的一個法向量,則$\left\{\begin{array}{l}\overrightarrow{AF}•\overrightarrow n=0\\ \overrightarrow{DF}•\overrightarrow n=0\end{array}\right.$,即$\left\{\begin{array}{l}-\sqrt{3}{x_2}+3{z_2}=0\\{y_2}+3{z_2}=0\end{array}\right.$,取$\overrightarrow n=(\sqrt{3},-3,1)$. …(11分)
設(shè)平面ABF與平面ADF所成銳二面角為θ,則$cosθ=\frac{{|{\overrightarrow m•\overrightarrow n}|}}{{|{\overrightarrow m}|•|{\overrightarrow n}|}}=\frac{5}{{\sqrt{13}•\sqrt{13}}}=\frac{5}{13}$,
即平面ABF與平面ADF所成銳二面角的余弦值為$\frac{5}{13}$. …(12分)![]()
點評 本題考查了空間線面垂直的判定,及向量法求二面角,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | p∧q | B. | ¬p∨q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com