欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=,E、F分別為CD、AB中點,沿EF將梯形AFED折起,使得∠AFB=60°,點G為FB的中點.
(1)求證:AG⊥平面BCEF
(2)求DG的長度.

【答案】分析:(1)根據(jù)翻折后EF⊥AF,EF⊥BF,可得EF⊥平面ABF,所以EF⊥AG,結合等邊△ABF中AG⊥BF,利用線面垂直的判定定理,即可證出AG⊥平面BCEF;
(2)取EC中點M,連接MC、MD、MG,可證出平面DCE∥平面ABF,從而AG∥DM,得到DM⊥平面BCEF.再在梯形BFEC中證出四邊形EFGC是平行四邊形,從而EF∥CG.然后在Rt△BCG中,算出CG=1,在Rt△GCM中,算出GM=,最后在Rt△GDM中,得到DG=
解答:解:(1)∵AF=BF且∠AFB=60°,
∴△ABF是等邊三角形
又∵G是FB的中點,∴AG⊥BF
∵翻折前的等腰梯形ABCD中,E、F分別是CD、AB的中點,
∴EF⊥AB,可得翻折后EF⊥AF,EF⊥BF
∵AF、BF是平面ABF內的相交直線,∴EF⊥平面ABF
∵AG?平面ABF,∴AG⊥EF,
∵BF、EF是平面BCEF內的相交直線,
∴AG⊥平面BCEF
(2)取EC中點M,連接MC、MD、MG
∵AF∥DE,AF?平面ABF,DE?平面ABF,∴DE∥平面ABF,同理可得:CE∥平面ABF,
∵DE、CE是平面DCE內的相交直線,∴平面DCE∥平面ABF,可得AG∥DM
∵AG⊥平面BCEF,∴DM⊥平面BCEF,
∵MG?平面BCEF,∴DM⊥MG,
∵梯形BFEC中,EC=FG=BG=1,BF∥EC,∴四邊形EFGC是平行四邊形,可得EF∥CG
∵EF⊥平面ABF,∴CG⊥平面ABF,可得CG⊥BG
Rt△BCG中,BG=1,BC=,可得CG==1
∴Rt△GCM中,GM==
又∵DM=CE=,
∴Rt△GDM中,DG==
點評:本題以一個平面翻折問題為載體,證明了線面垂直并且求出了兩點之間的距離,著重考查了空間平行、垂直位置關系的證明和距離計算等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高為3,O為AB中點,PO⊥平面ABCD,垂足為O,PO=2,EA∥PO.
(1)求證:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一簡單組合體ABCDEF如圖所示,已知M、N、P分別為AF,BD,EF的中點.
(1)求證:MN∥平面BCF;
(2)求證:AP⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1;幾何證明選講.
如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.
求證:DE•DC=AE•BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河北模擬)如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分別為CD、AB中點,沿EF將梯形AFED折起,使得∠AFB=60°,點G為FB的中點.
(1)求證:AG⊥平面BCEF
(2)求DG的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分別為AB、CD中點,分別沿DE、CE把△ADE與△BCE折起,使A、B重合于點P.

(1)求證:PE⊥CD;
(2)若點P在面CDE的射影恰好是點F,求EF的長.

查看答案和解析>>

同步練習冊答案