欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA=(2c+a)cos(A+C).
(Ⅰ)求角B的大小;
(Ⅱ)求函數(shù)f(x)=2sin2x+sin(2x-B)(x∈R)的最大值.

分析 (Ⅰ)由正弦定理和和差角的三角函數(shù)公式可得cosB,可得角B;
(Ⅱ)由(Ⅰ)和三角函數(shù)公式化簡可得f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$),易得函數(shù)最大值.

解答 解:(Ⅰ)∵在△ABC中bcosA=(2c+a)cos(A+C),
∴由正弦定理可得sinBcosA=(2sinC+sinA)(-cosB),
∴sinBcosA+cosBsinA=-2sinCcosB,
∴sin(A+B)=-2sinCcosB,即sinC=-2sinCcosB,
約掉sinC可得cosB=-$\frac{1}{2}$,B=$\frac{2π}{3}$;
(Ⅱ)由(Ⅰ)化簡可得f(x)=2sin2x+sin(2x-$\frac{2π}{3}$)
=2sin2x+sin2xcos$\frac{2π}{3}$-cos2xsin$\frac{2π}{3}$
=2sin2x-$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x
=$\frac{3}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=$\sqrt{3}$sin(2x-$\frac{π}{6}$),
∴當(dāng)2x-$\frac{π}{6}$=2kπ+$\frac{π}{2}$即x=kπ+$\frac{π}{3}$,k∈Z時,函數(shù)取最大值$\sqrt{3}$.

點評 本題考查正余弦定理解三角形,涉及和差角的三角函數(shù)公式和三角函數(shù)的最值,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且sin(A+$\frac{π}{6}$)-cos(B+C)=0.
(I)求角A;
(2)若b=4,sinB=2sinC,求邊a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(Ⅰ)證明:BD⊥平面A1CO;
(Ⅱ)若∠BAD=60°,求點C到平面OBB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(2x+1,3),$\overrightarrow$=(2-x.1),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)x的值等于( 。
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)等比數(shù)列{an}的前n項和為Sn,若a2=3,且a2015+a2016=0,則S101等于( 。
A.3B.303C.-3D.-303

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知m,n表示兩條不同直線,α,β,γ表示三個不同平面,以下命題正確的是( 。
A.若m∥α,m∥β,則α∥βB.若m?α,n?α,m∥β,n∥β,則α∥β
C.若m∥α,n?α,則m∥nD.若α∥β,γ∩α=m,γ∩β=n,則 m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時間(x個月)和市場占有率(y%)的幾組相關(guān)對應(yīng)數(shù)據(jù);
x12345
y0.020.050.10.150.18
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)根據(jù)上述回歸方程,分析該款旗艦機(jī)型市場占有率的變化趨勢,并預(yù)測自上市起經(jīng)過多少個月,該款旗艦機(jī)型市場占有率能超過0.5%(精確到月)
附:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.閱讀如圖的程序框圖,當(dāng)該程序運(yùn)行后輸出的S值是( 。
A.$\frac{3}{5}$B.$\frac{5}{8}$C.$\frac{8}{13}$D.$\frac{13}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中是全稱命題,并且又是真命題的是( 。
A.所有菱形的四條邊都相等B.?x0∈N,使2x0為偶數(shù)
C.對?x∈R,x2+2x+1>0D.π是無理數(shù)

查看答案和解析>>

同步練習(xí)冊答案