欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.設(shè)函數(shù)f(x)=$\frac{x+2}{x+1}$,指出f(x)的單調(diào)區(qū)間,并證明f(x)在其單調(diào)區(qū)間上的單調(diào)性.

分析 分離常數(shù),將原函數(shù)變成f(x)=1+$\frac{1}{x+1}$,根據(jù)反比例函數(shù)的單調(diào)性即知f(x)在(-∞,-1),(-1,+∞)上單調(diào)遞減,用定義證明:在定義域內(nèi)任意設(shè)x1<x2,然后作差,通分即可判斷x1,x2∈(-∞,-1),和x1,x2∈(-1,+∞)時(shí)的f(x1)與f(x2)的大小關(guān)系,從而證明出函數(shù)f(x)的單調(diào)性.

解答 解:f(x)=$\frac{x+2}{x+1}=1+\frac{1}{x+1}$;
∴f(x)在(-∞,-1),(-1,+∞)上單調(diào)遞減,用定義證明如下:
設(shè)x1<x2,則:f(x1)-f(x2)=$\frac{1}{{x}_{1}+1}-\frac{1}{{x}_{2}+1}=\frac{{x}_{2}-{x}_{1}}{({x}_{1}+1)({x}_{2}+1)}$;
∴x1<x2<-1,或-1<x1<x2時(shí),x2-x1>0,(x1+1)(x2+1)>0;
∴$\frac{{x}_{2}-{x}_{1}}{({x}_{1}+1)({x}_{2}+1)}>0$;
即f(x1)>f(x2);
∴f(x)在(-∞,-1),(-1,+∞)上單調(diào)遞減.

點(diǎn)評 考查反比例函數(shù)的單調(diào)性,分離常數(shù)法的運(yùn)用,減函數(shù)的定義,以及根據(jù)減函數(shù)的定義證明一個(gè)函數(shù)為減函數(shù)的方法和過程,作差的方法比較f(x1)與f(x2),作差后是分式的一般通分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sin2$\frac{π}{4}$x-$\sqrt{3}$sin$\frac{π}{4}$xcos$\frac{π}{4}$x.
(1)求f(x)的最大值及此時(shí)x的值;
(2)求f(1)+f(2)+f(3)+…+f(2015)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對大于ξ的自然數(shù)ξ的三次冪可用奇數(shù)進(jìn)行以下方式的“分裂”: 仿此,若m3的“分裂”數(shù)中有一個(gè)是73,則m的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.判斷函數(shù)y=$\sqrt{4x-{x}^{2}-3}$的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.12+$\frac{π}{3}$B.12+$\frac{2π}{3}$C.12+πD.12+$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.化簡:
(1)$\root{3}{3}$($\root{3}{\frac{4}{9}}$-$\root{3}{\frac{2}{9}}$+$\root{3}{\frac{1}{9}}$)
(2)$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}-2}$÷(1+$\frac{1}{a}$)×$\frac{1}{1+a}$(0<a<1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x、y∈(-$\sqrt{2}$,$\sqrt{2}$),且x•y=1,則$\frac{2}{2-{x}^{2}}$+$\frac{4}{4-{y}^{2}}$的最小值為( 。
A.$\frac{20}{7}$B.$\frac{12}{7}$C.$\frac{16+4\sqrt{2}}{7}$D.$\frac{16-4\sqrt{2}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}滿足a2=3,a5=9,若數(shù)列{bn}滿足b1=3,bn+1=abn,則{bn}的通項(xiàng)公式為bn=( 。
A.2n-1B.2n+1C.2n+1-1D.2n-1+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個(gè)命題中真命題的是( 。
A.經(jīng)過定點(diǎn)p(x0,y0)的直線都可能用方程y-y0=k(x-x0)表示
B.經(jīng)過任意兩個(gè)不同的點(diǎn)p1(x1,y1),p2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示
C.經(jīng)過定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示
D.不經(jīng)過原點(diǎn)的直線都可以用方程$\frac{x}{a}$+$\frac{y}$=1表示

查看答案和解析>>

同步練習(xí)冊答案