分析 由條件利用正弦定理可得 3sinB=2$\sqrt{3}$sinAsinB,且B=C,化簡(jiǎn)可得sinA=$\frac{π}{3}$或$\frac{2π}{3}$,從而判斷△ABC的形狀.
解答 解:由題意,在△ABC中,2$\sqrt{3}$asinB=3b且cosB=cosC,
則有:3sinB=2$\sqrt{3}$sinAsinB,且B=C,B,C為銳角,
解得:sinA=$\frac{\sqrt{3}}{2}$,
∴A=$\frac{π}{3}$,或$\frac{2π}{3}$,
故:當(dāng)A=$\frac{π}{3}$時(shí),再由B=C可得△ABC是等邊三角形.
當(dāng)A=$\frac{2π}{3}$時(shí),由B=C可得△ABC是等腰三角形.
故答案為:等腰三角形或等邊三角形.
點(diǎn)評(píng) 本題主要考查正弦定理的應(yīng)用,判斷三角形的形狀,根據(jù)三角函數(shù)的值求角,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $-\frac{{9+4\sqrt{2}}}{7}或-\frac{{9-4\sqrt{2}}}{7}$ | B. | $-\frac{{18+8\sqrt{2}}}{7}或-\frac{{18-8\sqrt{2}}}{7}$ | ||
| C. | $-\frac{{9+4\sqrt{2}}}{7}$ | D. | $-\frac{{9-4\sqrt{2}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | α∥β,l?α,n?β⇒l∥n | B. | l⊥n,l⊥α⇒n∥α | C. | l⊥α,l∥β⇒α⊥β | D. | α⊥β,l?α⇒l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=±$\sqrt{3}$x | B. | y=±$\frac{\sqrt{3}}{3}$x | C. | y=±$\frac{1}{3}$x | D. | y=±3x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x+2y-2=0 | B. | x-2y+2=0 | C. | 2x-y+1=0 | D. | 2x-y-1=0 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com